Global dynamics of a reaction-diffusion system.
A model of chemotaxis is analyzed that prevents blow-up of solutions. The model consists of a system of nonlinear partial differential equations for the spatial population density of a species and the spatial concentration of a chemoattractant in n-dimensional space. We prove the existence of solutions, which exist globally, and are L∞-bounded on finite time intervals. The hypotheses require nonlocal conditions on the species-induced production of the chemoattractant.
In this paper we consider a model of chemorepulsion. We prove global existence and uniqueness of smooth classical solutions in space dimension n = 2. For n = 3,4 we prove the global existence of weak solutions. The convergence to steady states is shown in all cases.
A system of quasilinear parabolic equations modelling chemotaxis and taking into account the volume filling effect is studied under no-flux boundary conditions. The resulting system is non-uniformly parabolic. A Lyapunov functional for the system is constructed. The proof of existence and uniqueness of regular global-in-time solutions is given in cases when either the Lyapunov functional is bounded from below or chemotactic forces are suitably weakened. In the first case solutions are uniformly...
We investigate the Cohen-Grosberg differential equations with mixed delays and time-varying coefficient: Several useful results on the functional space of such functions like completeness and composition theorems are established. By using the fixed-point theorem and some properties of the doubly measure pseudo almost automorphic functions, a set of sufficient criteria are established to ensure the existence, uniqueness and global exponential stability of a -pseudo almost automorphic solution. The...
We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous...
We study the chemotaxis system with singular sensitivity and logistic-type source: , under the non-flux boundary conditions in a smooth bounded domain , , and . It is shown with that the system possesses a global generalized solution for which is bounded when is suitably small related to and the initial datum is properly small, and a global bounded classical solution for .
We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...
We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...
We investigate a model describing the dynamics of a gas of self-gravitating Brownian particles. This model can also have applications for the chemotaxis of bacterial populations. We focus here on the collapse phase obtained at sufficiently low temperature/energy and on the post-collapse regime following the singular time where the central density diverges. Several analytical results are illustrated by numerical simulations.
Hematologic disorders such as the myelodysplastic syndromes (MDS) are discussed. The lingering controversies related to various diseases are highlighted. A simple biomathematical model of bone marrow - peripheral blood dynamics in the normal state is proposed and used to investigate cell behavior in normal hematopoiesis from a mathematical viewpoint. Analysis of the steady state and properties of the model are used to make postulations about the...
Cell motility is an integral part of a diverse set of biological processes. The quest for mathematical models of cell motility has prompted the development of automated approaches for gathering quantitative data on cell morphology, and the distribution of molecular players involved in cell motility. Here we review recent approaches for quantifying cell motility, including automated cell segmentation and tracking. Secondly, we present our own novel...
Polymerization of proteins is a biochemical process involved in different diseases. Mathematically, it is generally modeled by aggregation-fragmentation-type equations. In this paper we consider a general polymerization model and propose a high-order numerical scheme to investigate the behavior of the solution. An important property of the equation is the mass conservation. The WENO scheme is built to preserve the total mass of proteins along time....
Recently the effect of a quiescent phase (or dormant/resting phase in applications) on the dynamics of a system of differential equations has been investigated, in particular with respect to stability properties of stationary points. It has been shown that there is a general phenomenon of stabilization against oscillations which can be cast in rigorous form. Here we investigate, for homogeneous systems, the effect of a quiescent phase, and more generally, a phase with slower dynamics. We show that...
In the context of periodic homogenization based on two-scale convergence, we homogenize a linear system of four coupled reaction-diffusion equations, two of which are defined on a manifold. The system describes the most important subprocesses modeling the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum, which constitutes a fine structure inside the cell....