Displaying 41 – 60 of 85

Showing per page

Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form

Miguel Bernal, Petr Hušek, Vladimír Kučera (2006)

Kybernetika

This paper presents a relaxed scheme for controller synthesis of continuous- time systems in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC control law. The relaxations here provided allow state and input dependence of the membership functions’ derivatives, as well as independence on initial conditions when input constraints are needed. Moreover, the controller synthesis is attainable via linear matrix inequalities, which are efficiently solved by commercially available...

Nonregular decoupling with stability of two-output systems

Javier Ruiz, Jorge A. Torres Muñoz, Francisco Lizaola (2002)

Kybernetika

In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list I 2 is greater than or equal to the infinite and unstable structure of the proper and stable...

Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise

Viorel Barbu (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The parabolic equations driven by linearly multiplicative Gaussian noise are stabilizable in probability by linear feedback controllers with support in a suitably chosen open subset of the domain. This procedure extends to Navier − Stokes equations with multiplicative noise. The exact controllability is also discussed.

Notes on μ and l 1 robustness tests

Gábor Z. Kovács, Katalin M. Hangos (1998)

Kybernetika

An upper bound for the complex structured singular value related to a linear time-invariant system over all frequencies is given. It is in the form of the spectral radius of the -norm matrix of SISO input-output channels of the system when uncertainty blocks are SISO. In the case of MIMO uncertainty blocks the upper bound is the -norm of a special non-negative matrix derived from -norms of SISO channels of the system. The upper bound is fit into the inequality relation between the results of...

Novel fault detection criteria based on linear quadratic control performances

Dušan Krokavec, Anna Filasová (2012)

International Journal of Applied Mathematics and Computer Science

This paper proposes a new approach to designing a relatively simple algorithmic fault detection system that is potentially applicable in embedded diagnostic structures. The method blends the LQ control principle with checking and evaluating unavoidable degradation in the sequence of discrete-time LQ control performance index values due to faults in actuators, sensors or system dynamics. Design conditions are derived, and direct computational forms of the algorithms are given. A simulation example...

NTGsim: a graphical user interface and a 3D simulator for nonlinear trajectory generation methodology

Lyall Jonathan Di Trapani, Tamer Inanc (2010)

International Journal of Applied Mathematics and Computer Science

Nonlinear Trajectory Generation (NTG), developed by Mark Milam, is a software algorithm used to generate trajectories of constrained nonlinear systems in real-time. The goal of this paper is to present an approach to make NTG more userfriendly. To accomplish this, we have programmed a Graphical User Interface (GUI) in Java, using object oriented design, which wraps the NTG software and allows the user to quickly and efficiently alter the parameters of NTG. This new program, called NTGsim, eliminates...

Null controllability of a coupled model in population dynamics

Younes Echarroudi (2023)

Mathematica Bohemica

We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed...

Null controllability of a nonlinear diffusion system in reactor dynamics

Kumarasamy Sakthivel, Krishnan Balachandran, Jong-Yeoul Park, Ganeshan Devipriya (2010)

Kybernetika

In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients. Then...

Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type

Karine Beauchard (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator x 2 + | x | 2 γ y 2 ( γ > 0 ) in the rectangle ( x , y ) ( - 1 , 1 ) × ( 0 , 1 ) or with the Kolmogorov-type operator v γ x f + v 2 f ( γ { 1 , 2 } ) in the rectangle ( x , v ) 𝕋 × ( - 1 , 1 ) , under an additive control supported in an open subset ω of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 ....

Null controllability of Grushin-type operators in dimension two

Karine Beauchard, Piermarco Cannarsa, Roberto Guglielmi (2014)

Journal of the European Mathematical Society

We study the null controllability of the parabolic equation associated with the Grushin-type operator A = x 2 + x 2 γ γ 2 , ( γ > 0 ) , in the rectangle Ω = ( - 1 , 1 ) × ( 0 , 1 ) , under an additive control supported in an open subset ω of Ω . We prove that the equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 . In the transition regime γ = 1 and when ω is a strip ω = ( a , b ) × ( 0 , 1 ) ( 0 < a , b 1 ) ), a positive minimal time is required for null controllability. Our approach is based on the fact that, thanks to the particular...

Null controllability of nonlinear convective heat equations

Sebastian Aniţa, Viorel Barbu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The internal and boundary exact null controllability of nonlinear convective heat equations with homogeneous Dirichlet boundary conditions are studied. The methods we use combine Kakutani fixed point theorem, Carleman estimates for the backward adjoint linearized system, interpolation inequalities and some estimates in the theory of parabolic boundary value problems in Lk.

Currently displaying 41 – 60 of 85