Nonlinear stabilization by adding integrators
The focus of this paper is to develop reliable observer and filtering techniques for finite-dimensional battery models that adequately describe the charging and discharging behaviors. For this purpose, an experimentally validated battery model taken from the literature is extended by a mathematical description that represents parameter variations caused by aging. The corresponding disturbance models account for the fact that neither the state of charge, nor the above-mentioned parameter variations...
Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation of a set of submodels according to a particular aggregation mechanism, with the heterogeneous multiple model being of particular interest. This multiple model is characterized by the use of heterogeneous submodels in the sense that their state spaces are not...
In this paper we prove the existence of mild solutions and the controllability for semilinear differential inclusions with nonlocal conditions. Our results extend some recent theorems.
This paper presents a relaxed scheme for controller synthesis of continuous- time systems in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC control law. The relaxations here provided allow state and input dependence of the membership functions’ derivatives, as well as independence on initial conditions when input constraints are needed. Moreover, the controller synthesis is attainable via linear matrix inequalities, which are efficiently solved by commercially available...
In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list is greater than or equal to the infinite and unstable structure of the proper and stable...
The parabolic equations driven by linearly multiplicative Gaussian noise are stabilizable in probability by linear feedback controllers with support in a suitably chosen open subset of the domain. This procedure extends to Navier − Stokes equations with multiplicative noise. The exact controllability is also discussed.
An upper bound for the complex structured singular value related to a linear time-invariant system over all frequencies is given. It is in the form of the spectral radius of the -norm matrix of SISO input-output channels of the system when uncertainty blocks are SISO. In the case of MIMO uncertainty blocks the upper bound is the -norm of a special non-negative matrix derived from -norms of SISO channels of the system. The upper bound is fit into the inequality relation between the results of...
This paper proposes a new approach to designing a relatively simple algorithmic fault detection system that is potentially applicable in embedded diagnostic structures. The method blends the LQ control principle with checking and evaluating unavoidable degradation in the sequence of discrete-time LQ control performance index values due to faults in actuators, sensors or system dynamics. Design conditions are derived, and direct computational forms of the algorithms are given. A simulation example...
Nonlinear Trajectory Generation (NTG), developed by Mark Milam, is a software algorithm used to generate trajectories of constrained nonlinear systems in real-time. The goal of this paper is to present an approach to make NTG more userfriendly. To accomplish this, we have programmed a Graphical User Interface (GUI) in Java, using object oriented design, which wraps the NTG software and allows the user to quickly and efficiently alter the parameters of NTG. This new program, called NTGsim, eliminates...
In this paper we study a linear population dynamics model. In this model, the birth process is described by a nonlocal term and the initial distribution is unknown. The aim of this paper is to use a controllability result of the adjoint system for the computation of the density of individuals at some time .
We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed...
In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients. Then...