Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems
In this paper, a novel two-level framework was proposed and applied to solve the output average consensus problem over heterogeneous multi-agent systems. This approach is mainly based on the recent technique of system abstraction. For given multi-agent systems, we first constructed their abstractions as the upper level and solved their average consensus problem by leveraging well-known results for single integrators. Then the control protocols for physical agents in the lower level were synthesized...
In this paper, we study dynamical output feedback control for networked control systems (NCSs) based on two channel event-triggered mechanisms, which are proposed on both sides of the sensor and the controller. The output feedback controller is constructed by taking random network-induced delays into consideration without data buffer units. The controlled plant and the output feedback controller are updated immediately by the sampled input and the sampled output, respectively. By using the approaches...
The paper deals with the construction of the output feedback controllers for the systems that are transformable into a simpler form via coordinate change and static state feedback and, at the same time, via (possibly different) coordinate change and output injection. Illustrative examples are provided to stress the major obstacles in applying the above scheme, especially as far as its global aspects are concerned. The corresponding results are then applied to the problem of the real-time control...
This paper is concerned with the problem of global state regulation by output feedback for large-scale uncertain nonlinear systems with time delays in the states and inputs. The systems are assumed to be bounded by a more general form than a class of feedforward systems satisfying a linear growth condition in the unmeasurable states multiplying by unknown growth rates and continuous functions of the inputs or delayed inputs. Using the dynamic gain scaling technique and choosing the appropriate Lyapunov-Krasovskii...
The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a one-dimensional wave equation system for which the...
The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a...
The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a...
Let V and W be matrices of size n × pk and qm × n, respectively. A necessary and sufficient condition is given for the existence of a triple (A,B,C) such that V a k-step reachability matrix of (A,B) andW an m-step observability matrix of (A,C).
This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure. Meanwhile,...
Diabetes mellitus (DM) is a disease affecting millions of people worldwide, and its medical care brings an economic wear to patients and public health systems. Many efforts have been made to deal with DM, one of them is the full-automation of insulin delivery. This idea consists in design a closed-loop control system to maintain blood glucose levels (BGL) within normal ranges. Dynamic models of glucose-insulin-carbohydrates play an important role in synthesis of control algorithms, but also in other...