Note on stability of a control system
An upper bound for the complex structured singular value related to a linear time-invariant system over all frequencies is given. It is in the form of the spectral radius of the -norm matrix of SISO input-output channels of the system when uncertainty blocks are SISO. In the case of MIMO uncertainty blocks the upper bound is the -norm of a special non-negative matrix derived from -norms of SISO channels of the system. The upper bound is fit into the inequality relation between the results of...
The goal of this article is to analyze the observability properties for a space semi-discrete approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus extending the work [Castro and Micu, Numer. Math.102 (2006) 413–462] to nonuniform meshes. Our results...
In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we...
The problem of observer design for a class of nonlinear discrete-time systems with time-delay is considered. A new approach of nonlinear observer design is proposed for the class of systems. Based on differential mean value theory, the error dynamic is transformed into linear parameter variable system. By using Lyapunov stability theory and Schur complement lemma, the sufficient conditions expressed in terms of matrix inequalities are obtained to guarantee the observer error converges asymptotically...
Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the...
This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the...
This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor....
We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function...
This paper considers the problem of designing an observer-based output feedback controller to exponentially stabilize a class of linear systems with an interval time-varying delay in the state vector. The delay is assumed to vary within an interval with known lower and upper bounds. The time-varying delay is not required to be differentiable, nor should its lower bound be zero. By constructing a set of Lyapunov-Krasovskii functionals and utilizing the Newton-Leibniz formula, a delay-dependent stabilizability...
This paper addresses the problems of robust fault estimation and fault-tolerant control for Takagi-Sugeno (T-S) fuzzy systems with time delays and unknown sensor faults. A fuzzy augmented state and fault observer is designed to achieve the system state and sensor fault estimates simultaneously. Furthermore, based on the information of on-line fault estimates, an observer-based dynamic output feedback fault-tolerant controller is developed to compensate for the effect of faults by stabilizing the...
In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of -norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate...