Displaying 361 – 380 of 588

Showing per page

Objem klence

Milada Kočandrlová, Jana Vecková (2009)

Učitel matematiky

Obsah obecného mnohoúhelníku

Vlastimil Dlab (2012)

Učitel matematiky

Nejprve je čtenářům poskytnuta definice obecného mnohoúhelníku a popsání i jiných výrazů, které je nutné pro porozumění pokračování článku znát. V běžných učebnicích nalezneme nejvýše výpočet obsahu pravidelného mnohoúhelníku. Autor uvádí větu, podle které je možno vypočítat obsah i obecného mnohoúhelníku. Důkaz je proveden za pomoci indukce. Nakonec je uveden příklad, jak vzorec použít v praxi, včetně řešení.

Očekávané a skutečné znalosti matematiky žáků přicházejících na gymnázia

Dana Pavlíková (2014)

Učitel matematiky

The objective of this work is the analysis and evaluation of the pupils' different levels of knowledge of mathematics, but also their specific knowledge of arithmetic and geometry and their logical reasoning. The research study was conducted in the first years of secondary school were there are the most apparent differences in the level of acquired mathematical knowledge of pupils coming from different schools. Grade assessment of pupils which they get at the primary school is not always a clear...

On computations with causal compositional models

Vladislav Bína, Radim Jiroušek (2015)

Kybernetika

The knowledge of causal relations provides a possibility to perform predictions and helps to decide about the most reasonable actions aiming at the desired objectives. Although the causal reasoning appears to be natural for the human thinking, most of the traditional statistical methods fail to address this issue. One of the well-known methodologies correctly representing the relations of cause and effect is Pearl's causality approach. The paper brings an alternative, purely algebraic methodology...

Optional splitting formula in a progressively enlarged filtration

Shiqi Song (2014)

ESAIM: Probability and Statistics

Let 𝔽 F be a filtration andτbe a random time. Let 𝔾 G be the progressive enlargement of 𝔽 F withτ. We study the following formula, called the optional splitting formula: For any 𝔾 G-optional processY, there exists an 𝔽 F-optional processY′ and a function Y′′ defined on [0,∞] × (ℝ+ × Ω) being [ 0 , ] 𝒪 ( 𝔽 ) ℬ[0,∞]⊗x1d4aa;(F) measurable, such that Y = Y ' 1 [ 0 , τ ) + Y ' ' ( τ ) 1 [ τ , ) . Y=Y′1[0,τ)+Y′′(τ)1[τ,∞). (This formula can also be formulated for multiple random timesτ1,...,τk). We are interested in this formula because of its fundamental role in many...

Osvojování vědomostí o lineárních funkcích žáky gymnázia

Irena Budínová (2012)

Učitel matematiky

Článek řeší problém výuky funkcí na gymnáziích, kde je učiva mnoho a čas osvojit si nové znalosti je limitovaný. Popisuje nejčastější problémy, které žáci při studiu funkcí mají. Autorka dále popisuje výukovou metodu, kterou použila, aby žáci lépe pochopili základní pojmy a navazující učivo. Program byl rozdělen do tří fází. Nejprve si měli osvojit základní pojmy. Nejprve žáci řešili úlohy bez znalosti teorie, poté své výsledky zobecnili a nakonec byly zavedeny pojmy na příkladech, kterým žáci porozuměli....

Currently displaying 361 – 380 of 588