The search session has expired. Please query the service again.
Displaying 61 –
80 of
112
Let be an arbitrary parabolic subalgebra of a simple associative -algebra. The ideals of are determined completely; Each ideal of is shown to be generated by one element; Every non-linear invertible map on that preserves ideals is described in an explicit formula.
In set theory without the axiom of choice (), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC (AC for linearly ordered families of nonempty sets)—and hence AC (AC for well-ordered families of nonempty sets)— (where is an uncountable regular cardinal), and “for every infinite set , there is a bijection ”, implies the statement “there exists a field such that every vector...
The multivariate linear model, in which the matrix of the first order parameters is divided into two matrices: to the matrix of the useful parameters and to the matrix of the nuisance parameters, is considered. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters and on the variance components.
Let be the general Boolean algebra and a linear operator on . If for any in (, respectively), is regular (invertible, respectively) if and only if is regular (invertible, respectively), then is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over . Meanwhile, noting that a general Boolean algebra is isomorphic...
For it is said that is gut-majorized by , and we write , if there exists an -by- upper triangular g-row stochastic matrix such that . Define the relation as follows. if is gut-majorized by and is gut-majorized by . The (strong) linear preservers of on and strong linear preservers of this relation on have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of on and .
Let be the set of all real or complex matrices. For , we say that is row-sum majorized by (written as ) if , where is the row sum vector of and is the classical majorization on . In the present paper, the structure of all linear operators preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on and then find the linear preservers of row-sum majorization of these relations on .
We develop elementary methods of computing the monoid for a directly-finite regular ring . We construct a class of directly finite non-cancellative refinement monoids and realize them by regular algebras over an arbitrary field.
For a rank- matrix , we define the perimeter of as the number of nonzero entries in both and . We characterize the linear operators which preserve the rank and perimeter of rank- matrices over semifields. That is, a linear operator preserves the rank and perimeter of rank- matrices over semifields if and only if it has the form , or with some invertible matrices U and V.
We investigate the perimeter of nonnegative integer matrices. We also characterize the linear operators which preserve the rank and perimeter of nonnegative integer matrices. That is, a linear operator preserves the rank and perimeter of rank- matrices if and only if it has the form , or with appropriate permutation matrices and and positive integer matrix , where denotes Hadamard product.
Currently displaying 61 –
80 of
112