The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 99

Showing per page

Sur des hauteurs alternatives. II

Patrice Philippon (1994)

Annales de l'institut Fourier

Nous complétons l’interprétation géométrique de [P2]1991:726;1401792m:11061 pour les hauteurs locales archimédiennes et les distances projectives de [P1]88h11048. On montre comment ceci conduit à une taille (telle que définie dans [P3]) sur les anneaux de coordonnées de variétés projectives. On définit aussi des notions de maison et taille pour les extensions de type fini de Q .

Sur la constante de Hida des courbes modulaires et des courbes de Shimura

Emmanuel Ullmo (2001)

Journal de théorie des nombres de Bordeaux

La correspondance de Shimizu et Jacquet-Langlands donne des relations entre les quotients de la partie nouvelle de la jacobienne J 0 ( N ) de X 0 ( N ) et ceux de la partie nouvelle de la jacobienne de certaines courbes de Shimura associées. Nous comparons dans ce texte les congruences entre formes modulaires pour des quotients qui sont associés dans cette correspondance.

Sur la dynamique arithmétique des automorphismes de l’espace affine

Sandra Marcello (2003)

Bulletin de la Société Mathématique de France

Nous étudions les propriétés arithmétiques des itérés de certains automorphismes polynomiaux affines. Nous traitons des questions concernant les points périodiques et non-périodiques, en particulier nous comptons les points rationnels dans les orbites des points non-périodiques. Nous traitons le cas des automorphismes réguliers et triangulaires. Nous achevons de répondre aux questions en dimension 2 et montrons que la situation est nettement plus compliquée en dimension supérieure.

Sur la théorie de Hida pour le groupe GSp 2 g

Vincent Pilloni (2012)

Bulletin de la Société Mathématique de France

Nous construisons des familles ordinaires p -adiques de formes modulaires pour le groupe GSp 2 g . Notre travail généralise et précise des travaux antérieurs de Hida.

Sur le groupe des classes d’un schéma arithmétique

Bruno Kahn (2006)

Bulletin de la Société Mathématique de France

Nous donnons une démonstration du fait que le groupe des classes d’un schéma irréductible de type fini sur Spec 𝐙 est de type fini. Cette preuve ne repose pas sur le théorème de Mordell-Weil-Néron, mais plutôt sur le théorème de Mordell-Weil classique, le théorème de Néron-Severi et les théorèmes de Hironaka et de Jong sur la résolution des singularités. Nous en déduisons quelques corollaires, parmi lesquels le théorème de Mordell-Weil-Néron lui-même.

Sur le rang des jacobiennes sur un corps de fonctions

Marc Hindry, Amílcar Pacheco (2005)

Bulletin de la Société Mathématique de France

Soit f : 𝒳 C une surface projective fibrée au-dessus d’une courbe et définie sur un corps de nombres k . Nous donnons une interprétation du rang du groupe de Mordell-Weil sur k ( C ) de la jacobienne de la fibre générique (modulo la partie constante) en termes de moyenne des traces de Frobenius sur les fibres de f . L’énoncé fournit une réinterprétation de la conjecture de Tate pour la surface 𝒳 et généralise des résultats de Nagao, Rosen-Silverman et Wazir.

Sur le rang des variétés abéliennes sur un corps de fonctions

Amílcar Pacheco (2014)

Publications mathématiques de Besançon

Ce texte est un survey concernant la question du rang d’une variété abélienne A sur un corps de fonctions K en une variable sur un corps de base k . Il s’agit non seulement de discuter une borne supérieure pour ce rang, mais aussi d’étudier le comportement de cette borne si on prend une extension abélienne finie L de K . On se demande aussi : que se passe-t-il quand on enlève cette dernière hypothèse ? Dans un cas particulier, on discute de la validité d’un analogue du théorème de Lang-Néron. Pour...

Currently displaying 61 – 80 of 99