Displaying 41 – 60 of 101

Showing per page

Linear forms of a given Diophantine type

Oleg N. German, Nikolay G. Moshchevitin (2010)

Journal de Théorie des Nombres de Bordeaux

We prove a result on the existence of linear forms of a given Diophantine type.

Meilleures approximations diophantiennes simultanées et théorème de Lévy

Nicolas Chevallier (2005)

Annales de l’institut Fourier

D'après le théorème de Lévy, les dénominateurs du développement en fraction continue d'un réel croissent presque sûrement à une vitesse au plus exponentielle. Nous étendons cette estimation aux meilleures approximations diophantiennes simultanées de formes linéaires.

Multiplicative zero-one laws and metric number theory

Victor Beresnevich, Alan Haynes, Sanju Velani (2013)

Acta Arithmetica

We develop the classical theory of Diophantine approximation without assuming monotonicity or convexity. A complete 'multiplicative' zero-one law is established akin to the 'simultaneous' zero-one laws of Cassels and Gallagher. As a consequence we are able to establish the analogue of the Duffin-Schaeffer theorem within the multiplicative setup. The key ingredient is the rather simple but nevertheless versatile 'cross fibering principle'. In a nutshell it enables us to 'lift' zero-one laws to higher...

Note on the density constant in the distribution of self-numbers. II

G. Troi, U. Zannier (1999)

Bollettino dell'Unione Matematica Italiana

Dimostriamo che la costante che regola la distribuzione dei cosiddetti self numbers è un numero trascendente. Ciò precisa un risultato dimostrato in un precedente articolo dal medesimo titolo, ossia che tale costante sia irrazionale. Il metodo fa uso di una curiosa formula per l'espansione 2-adica di tale numero (già utilizzata nell'altro lavoro) e del profondo Teorema del Sottospazio.

On a mixed Littlewood conjecture for quadratic numbers

Bernard de Mathan (2005)

Journal de Théorie des Nombres de Bordeaux

We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in p -adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.

On a question of Schmidt and Summerer concerning 3 -systems

Johannes Schleischitz (2020)

Communications in Mathematics

Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper 3 -system ( P 1 , P 2 , P 3 ) with the property ϕ ¯ 3 = 1 . In fact, our method generalizes to provide n -systems with ϕ ¯ n = 1 , for arbitrary n 3 . We visualize our constructions with graphics. We further present explicit examples of numbers ξ 1 , ... , ξ n - 1 that induce the n -systems in question.

On Baker type lower bounds for linear forms

Tapani Matala-aho (2016)

Acta Arithmetica

A criterion is given for studying (explicit) Baker type lower bounds of linear forms in numbers 1 , Θ 1 , . . . , Θ m * over the ring of an imaginary quadratic field . This work deals with the simultaneous auxiliary functions case.

Currently displaying 41 – 60 of 101