Intermediate Diophantine exponents and parametric geometry of numbers
We prove a result on the existence of linear forms of a given Diophantine type.
After a brief exposition of the state-of-art of research on the (Euclidean) simultaneous Diophantine approximation constants , new lower bounds are deduced for and .
D'après le théorème de Lévy, les dénominateurs du développement en fraction continue d'un réel croissent presque sûrement à une vitesse au plus exponentielle. Nous étendons cette estimation aux meilleures approximations diophantiennes simultanées de formes linéaires.
We develop the classical theory of Diophantine approximation without assuming monotonicity or convexity. A complete 'multiplicative' zero-one law is established akin to the 'simultaneous' zero-one laws of Cassels and Gallagher. As a consequence we are able to establish the analogue of the Duffin-Schaeffer theorem within the multiplicative setup. The key ingredient is the rather simple but nevertheless versatile 'cross fibering principle'. In a nutshell it enables us to 'lift' zero-one laws to higher...
Dimostriamo che la costante che regola la distribuzione dei cosiddetti self numbers è un numero trascendente. Ciò precisa un risultato dimostrato in un precedente articolo dal medesimo titolo, ossia che tale costante sia irrazionale. Il metodo fa uso di una curiosa formula per l'espansione 2-adica di tale numero (già utilizzata nell'altro lavoro) e del profondo Teorema del Sottospazio.
We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in -adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.
Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper -system with the property . In fact, our method generalizes to provide -systems with , for arbitrary . We visualize our constructions with graphics. We further present explicit examples of numbers that induce the -systems in question.
A criterion is given for studying (explicit) Baker type lower bounds of linear forms in numbers over the ring of an imaginary quadratic field . This work deals with the simultaneous auxiliary functions case.