Abschätzung der Periodenlänge einer verallgemeinerten Kettenbruchentwicklung.
We study the generalized random Fibonacci sequences defined by their first non-negative terms and for n≥1, Fn+2=λFn+1±Fn (linear case) and ̃Fn+2=|λ̃Fn+1±̃Fn| (non-linear case), where each ± sign is independent and either + with probability p or − with probability 1−p (0<p≤1). Our main result is that, when λ is of the form λk=2cos(π/k) for some integer k≥3, the exponential growth of Fn for 0<p≤1, and of ̃Fn for 1/k<p≤1, is almost surely positive and given by ∫0∞log x dνk, ρ(x),...
Let be irrational. Several authors studied the numberswhere is a positive integer and denotes the set of all real numbers of the form with restricted integer coefficients . The value of was determined for many particular Pisot numbers and for the golden number. In this paper the value of is determined for irrational numbers , satisfying with a positive integer .
Nous établissons pour tout nombre sturmien (de développement dyadique sturmien) des propriétés d'approximation diophantienne très précises, ne dépendant que de l'angle de la suite sturmienne, généralisant ainsi des travaux antérieurs de Ferenczi-Mauduit et Bullett-Sentenac.
We establish arithmetical properties and provide essential bounds for bi-sequences of approximation coefficients associated with the natural extension of maps, leading to continued fraction-like expansions. These maps are realized as the fractional part of Möbius transformations which carry the end points of the unit interval to zero and infinity, extending the classical regular and backwards continued fraction expansions.
We establish new combinatorial transcendence criteria for continued fraction expansions. Let be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients of is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.