Displaying 61 – 80 of 120

Showing per page

Multiplicatively dependent triples of Tribonacci numbers

Carlos Alexis Ruiz Gómez, Florian Luca (2015)

Acta Arithmetica

We consider the Tribonacci sequence T : = T n n 0 given by T₀ = 0, T₁ = T₂ = 1 and T n + 3 = T n + 2 + T n + 1 + T n for all n ≥ 0, and we find all triples of Tribonacci numbers which are multiplicatively dependent.

Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques

Michel Waldschmidt (1991)

Journal de théorie des nombres de Bordeaux

Depuis un peu plus de vingt ans, la recherche de minorations de combinaisons linéaires de logarithmes de nombres algébriques avec des coefficients algébriques a fait l'objet de nombreux travaux. Dès que le nombre de logarithmes dépasse 2, toutes les démonstrations utilisées jusqu'à présent reposaient sur la méthode de Baker. Nous proposons ici d'autres méthodes.

On Baker type lower bounds for linear forms

Tapani Matala-aho (2016)

Acta Arithmetica

A criterion is given for studying (explicit) Baker type lower bounds of linear forms in numbers 1 , Θ 1 , . . . , Θ m * over the ring of an imaginary quadratic field . This work deals with the simultaneous auxiliary functions case.

On perfect powers in k -generalized Pell sequence

Zafer Şiar, Refik Keskin, Elif Segah Öztaş (2023)

Mathematica Bohemica

Let k 2 and let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence defined by P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 with initial conditions P - ( k - 2 ) ( k ) = P - ( k - 3 ) ( k ) = = P - 1 ( k ) = P 0 ( k ) = 0 , P 1 ( k ) = 1 . In this study, we handle the equation P n ( k ) = y m in positive integers n , m , y , k such that k , y 2 , and give an upper bound on n . Also, we will show that the equation P n ( k ) = y m with 2 y 1000 has only one solution given by P 7 ( 2 ) = 13 2 .

On terms of linear recurrence sequences with only one distinct block of digits

Diego Marques, Alain Togbé (2011)

Colloquium Mathematicae

In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.

On the diophantine equation ( x m + 1 ) ( x n + 1 ) = y ²

Maohua Le (1997)

Acta Arithmetica

1. Introduction. Let ℤ, ℕ, ℚ be the sets of integers, positive integers and rational numbers respectively. In [7], Ribenboim proved that the equation    (1) ( x m + 1 ) ( x n + 1 ) = y ² , x,y,m,n ∈ ℕ, x > 1, n > m ≥ 1, has no solution (x,y,m,n) with 2|x and (1) has only finitely many solutions (x,y,m,n) with 2∤x. Moreover, all solutions of (1) with 2∤x satisfy max(x,m,n) < C, where C is an effectively computable constant. In this paper we completely determine all solutions of (1) as follows.   Theorem. Equation (1)...

On the distance between generalized Fibonacci numbers

Jhon J. Bravo, Carlos A. Gómez, Florian Luca (2015)

Colloquium Mathematicae

For an integer k ≥ 2, let ( F ( k ) ) be the k-Fibonacci sequence which starts with 0,..., 0,1 (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.

Currently displaying 61 – 80 of 120