On the Ramanujan AGM fraction. II: The complex-parameter case.
Let be the Thue–Morse sequence on defined by , and for . Let be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number is equal to .
For k ≥ 2, the k-generalized Fibonacci sequence is defined to have the initial k terms 0,0,...,0,1 and be such that each term afterwards is the sum of the k preceding terms. We will prove that the number of solutions of the Diophantine equation (under some weak assumptions) is bounded by an effectively computable constant depending only on c.
For a real number and a positive integer , let . In this paper, we show that is dense in if and only if and is not a Pisot number. This completes several previous results and answers an open question raised by Erdös, Joó and Komornik [8].