Page 1 Next

Displaying 1 – 20 of 131

Showing per page

The best Diophantine approximation functions by continued fractions

Jing Cheng Tong (1996)

Mathematica Bohemica

Let ξ = [ a 0 ; a 1 , a 2 , , a i , ] be an irrational number in simple continued fraction expansion, p i / q i = [ a 0 ; a 1 , a 2 , , a i ] , M i = q i 2 | ξ - p i / q i | . In this note we find a function G ( R , r ) such that M n + 1 < R and M n - 1 < r imply M n > G ( R , r ) , M n + 1 > R and M n - 1 > r imply M n < G ( R , r ) . Together with a result the author obtained, this shows that to find two best approximation functions H ˜ ( R , r ) and L ˜ ( R , r ) is a well-posed problem. This problem has not been solved yet.

The digamma function, Euler-Lehmer constants and their p-adic counterparts

T. Chatterjee, S. Gun (2014)

Acta Arithmetica

The goal of this article is twofold. First, we extend a result of Murty and Saradha (2007) related to the digamma function at rational arguments. Further, we extend another result of the same authors (2008) about the nature of p-adic Euler-Lehmer constants.

Currently displaying 1 – 20 of 131

Page 1 Next