Page 1 Next

Displaying 1 – 20 of 140

Showing per page

S -integral points on elliptic curves - Notes on a paper of B. M. M. de Weger

Emanuel Herrmann, Attila Pethö (2001)

Journal de théorie des nombres de Bordeaux

In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and p -adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.

Searching for Diophantine quintuples

Mihai Cipu, Tim Trudgian (2016)

Acta Arithmetica

We consider Diophantine quintuples a, b, c, d, e. These are sets of positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most 5 . 441 · 10 26 Diophantine quintuples.

Sequences of algebraic integers and density modulo  1

Roman Urban (2007)

Journal de Théorie des Nombres de Bordeaux

We prove density modulo 1 of the sets of the form { μ m λ n ξ + r m : n , m } , where λ , μ is a pair of rationally independent algebraic integers of degree d 2 , satisfying some additional assumptions, ξ 0 , and r m is any sequence of real numbers.

Séries de Engel et fractions continuées

Pierre Liardet, Pierre Stambul (2000)

Journal de théorie des nombres de Bordeaux

Le thème de ce travail est la conversion entre le développement en fraction continuée d'un nombre réel et son développement en série de Engel. Chacun d'eux peut se traduire en terme de produits matriciels, produits qui sont à l'origine d'algorithmes, exprimés sous la forme de transducteurs, permettant de calculer un des développements à partir de l'autre. Cette méthode fournit des résultats nouveaux sur les nombres de Lucas, les nombres de Fredholm et sur toute une variété de nombres transcendants,...

Séries hypergéométriques et irrationalité des valeurs de la fonction zêta de Riemann

Tanguy Rivoal (2003)

Journal de théorie des nombres de Bordeaux

Nous effectuons un survol des résultats connus sur la nature diophantienne des valeurs de la fonction zêta de Riemann aux entiers. Nous mettons en particulier l’accent sur le rôle important des séries hypergéométriques dans les démonstrations de l’irrationalité de ζ ( 2 ) , ζ ( 3 ) et d’une infinité des nombres ζ ( 2 n + 1 ) .

Séries hypergéométriques multiples et polyzêtas

J. Cresson, S. Fischler, T. Rivoal (2008)

Bulletin de la Société Mathématique de France

Nous décrivons un algorithme théorique et effectif permettant de démontrer que des séries et intégrales hypergéométriques multiples relativement générales se décomposent en combinaisons linéaires à coefficients rationnels de polyzêtas.

Seshadri constants and interpolation on commutative algebraic groups

Stéphane Fischler, Michael Nakamaye (2014)

Annales de l’institut Fourier

In this article we study interpolation estimates on a special class of compactifications of commutative algebraic groups constructed by Serre. We obtain a large quantitative improvement over previous results due to Masser and the first author and our main result has the same level of accuracy as the best known multiplicity estimates. The improvements come both from using special properties of the compactifications which we consider and from a different approach based upon Seshadri constants and...

S-expansions in dimension two

Bernhard Schratzberger (2004)

Journal de Théorie des Nombres de Bordeaux

The technique of singularization was developped by C. Kraaikamp during the nineties, in connection with his work on dynamical systems related to continued fraction algorithms and their diophantine approximation properties. We generalize this technique from one into two dimensions. We apply the method to the the two dimensional Brun’s algorithm. We discuss, how this technique, and related ones, can be used to transfer certain metrical and diophantine properties from one algorithm to the others. In...

Currently displaying 1 – 20 of 140

Page 1 Next