Previous Page 4

Displaying 61 – 80 of 80

Showing per page

Counting invertible matrices and uniform distribution

Christian Roettger (2005)

Journal de Théorie des Nombres de Bordeaux

Consider the group SL 2 ( O K ) over the ring of algebraic integers of a number field K . Define the height of a matrix to be the maximum over all the conjugates of its entries in absolute value. Let SL 2 ( O K , t ) be the number of matrices in SL 2 ( O K ) with height bounded by t . We determine the asymptotic behaviour of SL 2 ( O K , t ) as t goes to infinity including an error term, SL 2 ( O K , t ) = C t 2 n + O ( t 2 n - η ) with n being the degree of K . The constant C involves the discriminant of K , an integral depending only on the signature of K , and the value of the Dedekind zeta function...

Counting irreducible polynomials over finite fields

Qichun Wang, Haibin Kan (2010)

Czechoslovak Mathematical Journal

In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: π ( x ) = q q - 1 x log q x + q ( q - 1 ) 2 x log q 2 x + O x log q 3 x , x = q n where π ( x ) denotes the number of monic irreducible polynomials in F q [ t ] with norm x .

Counting monic irreducible polynomials P in 𝔽 q [ X ] for which order of X ( mod P ) is odd

Christian Ballot (2007)

Journal de Théorie des Nombres de Bordeaux

Hasse showed the existence and computed the Dirichlet density of the set of primes p for which the order of 2 ( mod p ) is odd; it is 7 / 24 . Here we mimic successfully Hasse’s method to compute the density δ q of monic irreducibles P in 𝔽 q [ X ] for which the order of X ( mod P ) is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the δ p ’s as p varies through all rational primes.

Crible asymptotique et sommes de Kloosterman

Jimena Sivak-Fischler (2009)

Bulletin de la Société Mathématique de France

On montre à l’aide de méthodes de crible, de méthodes issues de la théorie des formes automorphes et de géométrie algébrique ainsi qu’à l’aide de la loi de Sato-Tate verticale que le signe des sommes de Kloosterman Kl ( 1 , 1 ; n ) change une infinité de fois pour n parcourant les entiers sans facteur carré ayant au plus 18 facteurs premiers. Ceci améliore un résultat précédent de Fouvry et Michel qui avaient obtenu 23 à la place de 18 .

Crible et 3-rang des corps quadratiques

Karim Belabas (1996)

Annales de l'institut Fourier

Considérons le cardinal h 3 * ( Δ ) de l’ensemble des racines cubiques de l’unité dans le groupe des classes de ( Δ ) , où Δ est un discriminant fondamental. Un résultat de Davenport et Heilbronn calcule la valeur moyenne de ces nombres quand Δ varie. On obtient ici géométriquement une borne explicite pour le reste, avec la possibilité supplémentaire de restreindre les Δ à des progressions arithmétiques. Des techniques de crible permettent alors d’évaluer la 3-partie des ( ± P k ) , où P k est pseudo-premier d’ordre k . On...

Currently displaying 61 – 80 of 80

Previous Page 4