Norms from Quadratic Fields and Their Relation to Noncommuting 2 x 2 Matrices III. A Link between the 4-rank of the Ideal Class Groups in...(..m) and in ...(...-m).
The results of [2] on the congruence of Ankeny-Artin-Chowla type modulo p² for real subfields of of a prime degree l is simplified. This is done on the basis of a congruence for the Gauss period (Theorem 1). The results are applied for the quadratic field ℚ(√p), p ≡ 5 (mod 8) (Corollary 1).
Let be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
For a number field , let denote its Hilbert -class field, and put . We will determine all imaginary quadratic number fields such that is abelian or metacyclic, and we will give in terms of generators and relations.
Let p be an odd prime number. We prove the existence of certain infinite families of imaginary quadratic fields in which p splits and for which the Iwasawa λ-invariant of the cyclotomic ℤₚ-extension is equal to 1.
We give a family of -polynomials with integer coefficients whose splitting fields over are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.