Minorations de hauteurs et petits régulateurs relatifs
J. MARTINET, A.M. BERGE (1987/1988)
Seminaire de Théorie des Nombres de Bordeaux
Francisca Cánovas Orvay (1991)
Extracta Mathematicae
H. G. Grundman, L. L. Hall (2004)
Acta Arithmetica
Marie-Nicole Gras (1974)
Mémoires de la Société Mathématique de France
Ryan C. Daileda (2006)
Acta Arithmetica
Stéphane Louboutin (1991)
Acta Arithmetica
Kevin J. McGown (2012)
Journal de Théorie des Nombres de Bordeaux
Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminantA large part of the proof is in establishing the following more general result: Let be a Galois number field of odd prime degree and conductor . Assume the GRH for . Ifthen is not norm-Euclidean.
Marie-Nicole Gras (1980)
Annales de l'institut Fourier
On démontre, à partir de résultats de H.J. Godwin, H. Brunotte et F. Halter-Koch, le théorème suivant : soit un corps cubique cyclique de conducteur dont le groupe de Galois est engendré par ; soit le groupe des unités de norme 1.Soit , , telle que soit minimum. Alors est un -générateur de .
Abdelmalek Azizi, Mohamed Mahmoud Chems-Eddin, Abdelkader Zekhnini (2022)
Mathematica Bohemica
Let be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
Kiyoaki Iimura (1979)
Acta Arithmetica
Frank III Gerth (1975)
Journal für die reine und angewandte Mathematik
Peter Stevenhagen (1996)
Acta Arithmetica
Toru Nakahara (1982)
Monatshefte für Mathematik
Francisca Cánovas Orvay (1991)
Extracta Mathematicae
Ulrich Halbritter, Michael E. Pohst (2000)
Journal de théorie des nombres de Bordeaux
In this paper we introduce multiplicative lattices in and determine finite unions of suitable simplices as fundamental domains for sublattices of finite index. For this we define cyclic non-negative bases in arbitrary lattices. These bases are then used to calculate Shintani cones in totally real algebraic number fields. We mainly concentrate our considerations to lattices in two and three dimensions corresponding to cubic and quartic fields.
Hamid Ben Yakkou, Jalal Didi (2024)
Mathematica Bohemica
Let be a pure number field generated by a complex root of a monic irreducible polynomial , where , , are three positive natural integers. The purpose of this paper is to study the monogenity of . Our results are illustrated by some examples.
Lhoussain El Fadil (2022)
Commentationes Mathematicae Universitatis Carolinae
Let be a number field generated by a complex root of a monic irreducible polynomial , , is a square free rational integer. We prove that if or and , then the number field is monogenic. If or , then the number field is not monogenic.
Mohammed Sahmoudi, Mohammed Elhassani Charkani (2023)
Mathematica Bohemica
Let be an extension of a number field , where satisfies the monic irreducible polynomial of prime degree belonging to ( is the ring of integers of ). The purpose of this paper is to study the monogenity of over by a simple and practical version of Dedekind’s criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field with a...
Bernadette Deshommes (1989)
Journal für die reine und angewandte Mathematik
Abdelmalek Azizi, Mohamed Mahmoud Chems-Eddin, Abdelkader Zekhnini (2021)
Commentationes Mathematicae Universitatis Carolinae
Let be a square free integer and . In the present work we determine all the fields such that the -class group, , of is of type or .