Class numbers of elliptic function fields and the distribution of prime numbers
Pour premier impair, l’étude du -groupe des classes d’idéaux des extensions abéliennes de degré premier à se ramène à celle de groupes notés , où parcourt un certain ensemble de caractères -adiques irréductibles.Il est démontré, dans cet article, une généralisation des congruences de Leopoldt et Fresnel entre les fonctions -adiques et les nombres de Bernoulli généralisés. Cette généralisation conduit à une amélioration de la connaissance des : en effet, la juxtaposition de ce résultat...
Soit une extension cyclique réelle de degré 4 de de sous-corps quadratique . Nous déterminons le nombre de classes et les unités de puis nous montrons que le problème de la “capitulation” de classes de dans est caractérisé par des propriétés élémentaires des unités de . Nous avons obtenu une table numérique du nombre de classes, des unités ainsi que de l’éventuelle “capitulation” d’une classe, pour tous les corps de conducteur ; nous en publions ici un extrait.
Pour un nombre premier impair et une extension abélienne de corps de nombres totalement réels, nous utilisons la Conjecture Principale Équivariante démontrée par Ritter et Weiss (modulo la nullité de l’invariant ) pour calculer l’idéal de Fitting d’un certain module d’Iwasawa sur l’algèbre complète où et est la -extension cyclotomique de . Par descente, nous en déduisons la -partie de la version cohomologique de la conjecture de Coates-Sinnott, ainsi qu’une forme faible de la -partie...