Global units and ideal class groups.
This paper concerns the arithmetic of certain -adic families of elliptic modular forms. We relate, using a formula of Rubin, some Iwasawa-theoretic aspects of the three items in the title of this paper. In particular, we examine several conjectures, three of which assert the non-triviality of an Euler system, a -adic regulator, and the derivative of a -adic -function. We investigate sufficient conditions for the first conjecture to hold and show that, under additional assumptions, the first...
Nous comparons le comportement dans les -extensions du nombre de classes d’idéaux avec le comportement de l’indice du groupe des unités elliptiques de Rubin.
Let be a prime number, and let be an imaginary quadratic number field in which decomposes into two primes and . Let be the unique -extension of which is unramified outside of , and let be a finite extension of , abelian over . Let be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of are finite. Our approach uses distributions and the -adic -function, as defined in [5].