Displaying 181 – 200 of 343

Showing per page

On non-commutative twisting in étale and motivic cohomology

Jens Hornbostel, Guido Kings (2006)

Annales de l’institut Fourier

This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups H 1 ( 𝒪 K [ 1 / S ] , H i ( X ¯ , p ( j ) ) ) , where X Spec 𝒪 K [ 1 / S ] is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to H i ( X ¯ , p ( j ) ) . Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.

On octahedral extensions of and quadratic -curves

Julio Fernández (2003)

Journal de théorie des nombres de Bordeaux

We give a necessary condition for a surjective representation Gal ( ¯ / ) PGL 2 ( 𝔽 3 ) to arise from the 3 -torsion of a -curve. We pay a special attention to the case of quadratic -curves.

On relative integral bases for unramified extensions

Kevin Hutchinson (1995)

Acta Arithmetica

0. Introduction. Since ℤ is a principal ideal domain, every finitely generated torsion-free ℤ-module has a finite ℤ-basis; in particular, any fractional ideal in a number field has an "integral basis". However, if K is an arbitrary number field the ring of integers, A, of K is a Dedekind domain but not necessarily a principal ideal domain. If L/K is a finite extension of number fields, then the fractional ideals of L are finitely generated and torsion-free (or, equivalently, finitely generated and...

On some metabelian 2-groups and applications I

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous (2016)

Colloquium Mathematicae

Let G be some metabelian 2-group satisfying the condition G/G’ ≃ ℤ/2ℤ × ℤ/2ℤ × ℤ/2ℤ. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields k satisfying the condition G a l ( k ( 2 ) / k ) G , where k ( 2 ) is the second Hilbert 2-class field of k.

On the 2 -class group of some number fields with large degree

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Abdelkader Zekhnini (2021)

Archivum Mathematicum

Let d be an odd square-free integer, m 3 any integer and L m , d : = ( ζ 2 m , d ) . In this paper, we shall determine all the fields L m , d having an odd class number. Furthermore, using the cyclotomic 2 -extensions of some number fields, we compute the rank of the 2 -class group of L m , d whenever the prime divisors of d are congruent to 3 or 5 ( mod 8 ) .

On the Galois group of generalized Laguerre polynomials

Farshid Hajir (2005)

Journal de Théorie des Nombres de Bordeaux

Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α - < 0 , Filaseta and Lam have shown that the n th degree Generalized Laguerre Polynomial L n ( α ) ( x ) = j = 0 n n + α n - j ( - x ) j / j ! is irreducible for all large enough n . We use our criterion to show that, under these conditions, the Galois group of L n ( α ) ( x ) is either the alternating or symmetric group on n letters, generalizing results of Schur for α = 0 , 1 , ± 1 2 , - 1 - n .

Currently displaying 181 – 200 of 343