An arithmetic problem on the sums of three squares
Soit un nombre premier impair. Soit une extension abélienne réelle de de degré premier à et soit son groupe de Galois; soit () un caractère -adique irréductible de . Soit la -extension abélienne maximale de non ramifiée en dehors de et soit le -module Gal ; (la -composante de ) est un module fini sur l’anneau des entiers de (corps des valeurs sur d’un caractère de degré 1 divisant ). On construit explicitement pour tout un élément de qui annule le module...
Fix an integer . Rikuna introduced a polynomial defined over a function field whose Galois group is cyclic of order , where satisfies some mild hypotheses. In this paper we define the family of generalized Rikuna polynomials of degree . The are constructed iteratively from the . We compute the Galois groups of the for odd over an arbitrary base field and give applications to arithmetic dynamical systems.
L’anneau des entiers d’une extension galoisienne de peut ne pas être localement libre sur son ordre associé dans l’algèbre du groupe : c’est le résultat principal de l’étude de la structure galoisienne des extensions sauvagement ramifiées d’un corps local absolument non ramifié, dans le cas où le groupe d’inertie est cyclique.
We study the asymptotics conjecture of Malle for dihedral groups of order , where is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen–Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.