Displaying 141 – 160 of 343

Showing per page

La relation linéaire a = b + c + + t entre les racines d’un polynôme

Franck Lalande (2007)

Journal de Théorie des Nombres de Bordeaux

Nous nous intéressons à la question suivante : À quelles conditions un groupe G est-il le groupe de Galois (principalement sur le corps des rationnels) d’un polynôme irréductible dont certaines racines distinctes vérifient une relation linéaire du type a = b + c + + t  ? Nous montrons que la relation a = b + c est possible dès que G contient un sous-groupe d’ordre 6 , nous décrivons les groupes abéliens pour lesquels la relation a = b + c + d est satisfaite et construisons une famille de relations a = b + c + + t de longueur 1 + ( m - 2 ) ( m - 3 ) / 2 pour le groupe alterné...

Maximal unramified extensions of imaginary quadratic number fields of small conductors, II

Ken Yamamura (2001)

Journal de théorie des nombres de Bordeaux

In the previous paper [15], we determined the structure of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 1000 under the Generalized Riemann Hypothesis (GRH) except for 23 fields (these are of conductors 723 ) and give a table of Gal ( K u r / K ) . We update the table (under GRH). For 19 exceptional fields K of them, we determine Gal ( K u r / K ) . In particular, for K = 𝐐 ( - 856 ) , we obtain Gal ( K u r / K ) S 4 ˜ × C 5 and K u r = K 4 , the fourth Hilbert class field of K . This is the first example of a number field whose...

Maximal unramified extensions of imaginary quadratic number fields of small conductors

Ken Yamamura (1997)

Journal de théorie des nombres de Bordeaux

We determine the structures of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 420 ( 719 under the Generalized Riemann Hypothesis). For all such K , K u r is K , the Hilbert class field of K , the second Hilbert class field of K , or the third Hilbert class field of K . The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class...

Currently displaying 141 – 160 of 343