The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 241 – 260 of 291

Showing per page

Sur les 𝐙 2 -extensions d’un corps quadratique imaginaire

Georges Gras (1983)

Annales de l'institut Fourier

Soit k = Q ( - m ) un corps quadratique imaginaire, soient k et F ses deux Z 2 -extensions naturelles (la cyclotomique et la prodiédrale), et soit k ˇ son 2-corps de classes de Hilbert. Soient 𝒫 le complété en 2 de k , ρ = 0 ou 1, égale à 1 si et seulement si tout diviseur impair de m est congru à ± 1 mod 8 , χ = 0 ou 1 le 2-rang de Gal ( k F / k ) , et t = 0 , 1 ou 2 le 2-rang de Gal k ˇ F k ˇ / k ) . On a χ ρ , et des considérations cohomologiques élémentaires nous donnent d’autres contraintes entre 𝒫 , χ et t , mais nous trouvons 2 obstructions supplémentaires de nature...

Sur les corps de Hilbert-Speiser

Thomas Herreng (2005)

Journal de Théorie des Nombres de Bordeaux

On dit qu’un corps est de Hilbert-Speiser en un premier p si toute extension modérée abélienne finie de degré p admet une base normale entière. On dit qu’un corps est de Hilbert-Speiser s’il est de Hilbert-Speiser pour tout premier p . Il est bien connu que est un tel corps. Dans un article [3] de 1998, Greither, Replogle, Rubin et Srivastav ont montré que était le seul corps de Hilbert-Speiser. On donne ici une condition nécessaire et suffisante pour qu’un corps soit de Hilbert-Speiser en p = 2 ....

Sur les -classes d’idéaux dans les extensions cycliques relatives de degré premier

Georges Gras (1973)

Annales de l'institut Fourier

Soit H ( K ) le -groupe des classes d’idéaux d’une extension K / k cyclique de degré premier et soit H i = Ker ( σ - 1 ) i ( σ générateur de Gal ( K / k ) ). Un procédé généralisant la formule de Chevalley (formule des classes “ambiges”) permet de déterminer H i + 1 et l’ordre de H i + 1 / H i à partir de H i . On obtient donc une méthode qui permet, d’une part, une détermination effective de la structure de H ( K ) et, d’autre part, une étude générale des problèmes de -classes d’idéaux.

Sur les -classes d’idéaux dans les extensions cycliques relatives de degré premier

Georges Gras (1973)

Annales de l'institut Fourier

Soit H ( K ) le -groupe des classes d’idéaux d’une extension K / k cyclique de degré premier et soit H i = Ker ( σ - 1 ) i ( σ générateur de Gal ( K / k ) ). Un procédé généralisant la formule de Chevalley (formule des classes “ambiges”) permet de déterminer H i + 1 et l’ordre de H i + 1 / H i à partir de H i . On obtient donc une méthode qui permet, d’une part, une détermination effective de la structure de H ( K ) et, d’autre part, une étude générale des problèmes de -classes d’idéaux.

Currently displaying 241 – 260 of 291