Displaying 41 – 60 of 99

Showing per page

Généralisation d’un théorème d’Iwasawa

Jean-François Jaulent (2005)

Journal de Théorie des Nombres de Bordeaux

Nous généralisons à certains quotients finis d’un Λ -module noethérien non nécessairement de torsion le classique théorème d’Iwasawa sur l’expression asymptotique du -nombre de classes dans les -extensions. Puis nous illustrons les résultats obtenus en déterminant explicitement les caractères invariants attachés aux -groupes de S -classes T -infinitésimales dans une tour cyclotomique à partir de quelques paramètres référents et de données galoisiennes simples des extensions considérées. Un outil...

Generalized Kummer theory and its applications

Toru Komatsu (2009)

Annales mathématiques Blaise Pascal

In this report we study the arithmetic of Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory. It is useful under the condition that ζ k and ω k where ζ is a primitive n -th root of unity and ω = ζ + ζ - 1 . In particular, this result with ζ k implies the classical Kummer theory. We also present a method for calculating not only the conductor but also the Artin symbols of the cyclic extension which is defined by the Rikuna polynomial.

Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to β -shifts

Veronica Baker, Marcy Barge, Jaroslaw Kwapisz (2006)

Annales de l’institut Fourier

This article is devoted to the study of the translation flow on self-similar tilings associated with a substitution of Pisot type. We construct a geometric representation and give necessary and sufficient conditions for the flow to have pure discrete spectrum. As an application we demonstrate that, for certain beta-shifts, the natural extension is naturally isomorphic to a toral automorphism.

Geometric study of the beta-integers for a Perron number and mathematical quasicrystals

Jean-Pierre Gazeau, Jean-Louis Verger-Gaugry (2004)

Journal de Théorie des Nombres de Bordeaux

We investigate in a geometrical way the point sets of     obtained by the   β -numeration that are the   β -integers   β [ β ]   where   β   is a Perron number. We show that there exist two canonical cut-and-project schemes associated with the   β -numeration, allowing to lift up the   β -integers to some points of the lattice   m   ( m =   degree of   β ) lying about the dominant eigenspace of the companion matrix of   β  . When   β   is in particular a Pisot number, this framework gives another proof of the fact that   β   is...

Geometric theta-lifting for the dual pair 𝕊𝕆 2 m , 𝕊 p 2 n

Sergey Lysenko (2011)

Annales scientifiques de l'École Normale Supérieure

Let X be a smooth projective curve over an algebraically closed field of characteristic  > 2 . Consider the dual pair H = SO 2 m , G = Sp 2 n over X with H split. Write Bun G and Bun H for the stacks of G -torsors and H -torsors on X . The theta-kernel Aut G , H on Bun G × Bun H yields theta-lifting functors F G : D ( Bun H ) D ( Bun G ) and F H : D ( Bun G ) D ( Bun H ) between the corresponding derived categories. We describe the relation of these functors with Hecke operators. In two particular cases these functors realize the geometric Langlands functoriality for the above pair (in the non ramified case)....

Currently displaying 41 – 60 of 99