Généralisation d'un théorème de I. M. Vinogradov à un corps de séries formelles sur un corps fini
Nous généralisons à certains quotients finis d’un -module noethérien non nécessairement de torsion le classique théorème d’Iwasawa sur l’expression asymptotique du -nombre de classes dans les -extensions. Puis nous illustrons les résultats obtenus en déterminant explicitement les caractères invariants attachés aux -groupes de -classes -infinitésimales dans une tour cyclotomique à partir de quelques paramètres référents et de données galoisiennes simples des extensions considérées. Un outil...
In this report we study the arithmetic of Rikuna’s generic polynomial for the cyclic group of order and obtain a generalized Kummer theory. It is useful under the condition that and where is a primitive -th root of unity and . In particular, this result with implies the classical Kummer theory. We also present a method for calculating not only the conductor but also the Artin symbols of the cyclic extension which is defined by the Rikuna polynomial.
This article is devoted to the study of the translation flow on self-similar tilings associated with a substitution of Pisot type. We construct a geometric representation and give necessary and sufficient conditions for the flow to have pure discrete spectrum. As an application we demonstrate that, for certain beta-shifts, the natural extension is naturally isomorphic to a toral automorphism.
We investigate in a geometrical way the point sets of obtained by the -numeration that are the -integers where is a Perron number. We show that there exist two canonical cut-and-project schemes associated with the -numeration, allowing to lift up the -integers to some points of the lattice ( degree of ) lying about the dominant eigenspace of the companion matrix of . When is in particular a Pisot number, this framework gives another proof of the fact that is...
Let be a smooth projective curve over an algebraically closed field of characteristic . Consider the dual pair over with split. Write and for the stacks of -torsors and -torsors on . The theta-kernel on yields theta-lifting functors and between the corresponding derived categories. We describe the relation of these functors with Hecke operators. In two particular cases these functors realize the geometric Langlands functoriality for the above pair (in the non ramified case)....