Displaying 261 – 280 of 726

Showing per page

Integral models for moduli spaces of G -torsors

Martin Olsson (2012)

Annales de l’institut Fourier

Given a finite tame group scheme G , we construct compactifications of moduli spaces of G -torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.

Intégration motivique sur les schémas formels

Julien Sebag (2004)

Bulletin de la Société Mathématique de France

Nous généralisons la théorie de l’intégration motivique au cadre des schémas formels. Nous définissons et étudions l’anneau booléen des ensembles mesurables, la mesure motivique, l’intégrale motivique et nous démontrons un théorème de changement de variables pour cette intégrale.

Invariance for multiples of the twisted canonical bundle

Benoît Claudon (2007)

Annales de l’institut Fourier

Let 𝒳 Δ a smooth projective family and ( L , h ) a pseudo-effective line bundle on 𝒳 (i.e. with a non-negative curvature current Θ h L ). In its works on invariance of plurigenera, Y.-T. Siu was interested in extending sections of m K 𝒳 0 + L (defined over the central fiber of the family 𝒳 0 ) to sections of m K 𝒳 + L . In this article we consider the following problem: to extend sections of m ( K 𝒳 + L ) . More precisely, we show the following result: assuming the triviality of the multiplier ideal sheaf ( 𝒳 0 , h | 𝒳 0 ) , any section of m ( K 𝒳 0 + L ) extends to 𝒳  ; in other...

Invertible polynomial mappings via Newton non-degeneracy

Ying Chen, Luis Renato G. Dias, Kiyoshi Takeuchi, Mihai Tibăr (2014)

Annales de l’institut Fourier

We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.

Jacobi-Bernoulli cohomology and deformations of schemes and maps

Ziv Ran (2012)

Open Mathematics

We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.

K3 fibrations on rigid double octic Calabi-Yau threefolds

Paweł Borówka (2016)

Annales Polonici Mathematici

We give a description of the Picard group of double octic Calabi-Yau threefolds using a K3 fibration defined by a singular line of the branch octic. In particular, we show that the group is generated by the Picard group of a generic fibre and the subgroup generated by the components of the reducible fibres.

Currently displaying 261 – 280 of 726