Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part
We give a Hodge-theoretic parametrization of certain real Lie group orbits in the compact dual of a Mumford-Tate domain, and characterize the orbits which contain a naive limit Hodge filtration. A series of examples are worked out for the groups , , and .
This article gives a survey of recent results on a generalization of the notion of a Hodge structure. The main example is related to the Fourier-Laplace transform of a variation of polarizable Hodge structure on the punctured affine line, like the Gauss-Manin systems of a proper or tame algebraic function on a smooth quasi-projective variety. Variations of non-commutative Hodge structures often occur on the tangent bundle of Frobenius manifolds, giving rise to a tt* geometry.
Given a positive singular hermitian metric of a pseudoeffective line bundle on a complex Kähler manifold, a singular foliation is constructed satisfying certain analytic analogues of numerical conditions. This foliation refines Tsuji’s numerically trivial fibration and the Iitaka fibration. Using almost positive singular hermitian metrics with analytic singularities on a pseudo-effective line bundle , a foliation is constructed refining the nef fibration. If the singularities of the foliation are...
We study the Hilbert scheme of smooth connected curves on a smooth del Pezzo -fold . We prove that any degenerate curve , i.e. any curve contained in a smooth hyperplane section of , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) and (ii) for every line on such that , the normal bundle is trivial (i.e. ). As a consequence, we prove an analogue (for ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components...