Displaying 161 – 180 of 726

Showing per page

Differential Equations associated to Families of Algebraic Cycles

Pedro Luis del Angel, Stefan Müller-Stach (2008)

Annales de l’institut Fourier

We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.

Effective Nullstellensatz for arbitrary ideals

János Kollár (1999)

Journal of the European Mathematical Society

Let f i be polynomials in n variables without a common zero. Hilbert’s Nullstellensatz says that there are polynomials g i such that g i f i = 1 . The effective versions of this result bound the degrees of the g i in terms of the degrees of the f j . The aim of this paper is to generalize this to the case when the f i are replaced by arbitrary ideals. Applications to the Bézout theorem, to Łojasiewicz–type inequalities and to deformation theory are also discussed.

Currently displaying 161 – 180 of 726