Displaying 241 – 260 of 1712

Showing per page

Classes de Chern et classes de cycles en cohomologie rigide

Denis Petrequin (2003)

Bulletin de la Société Mathématique de France

Nous construisons dans cet article les classes de Chern et les classes de cycles en cohomologie rigide. Nous démontrons par la suite que ces constructions vérifient bien les propriétés attendues. La cohomologie rigide est donc une cohomologie de Weil.

Classes de cohomologie positives dans les variétés kählériennes compactes

Olivier Debarre (2004/2005)

Séminaire Bourbaki

Étant donnée une variété kählérienne compacte X , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault H 1 , 1 ( X , 𝐑 ) H 2 ( X , 𝐑 ) le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type ( 1 , 1 ) . Lorsque X est projective, les traces de ces cônes sur l’espace de Néron–Severi NS ( X ) 𝐑 H 1 , 1 ( X , 𝐑 ) engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.

Classes d'Euler équivariantes et points rationnellement lisses

Alberto Arabia (1998)

Annales de l'institut Fourier

Lorsqu’un tore T agit sur une variété algébrique complexe X munie de la topologie transcendante, nous définissons la classe d’Euler T -équivariante d’un point fixe isolé x X T , qu’il soit lisse ou non. Cette classe est une fraction rationnelle à un nombre fini de variables et lorsque x est rationnellement lisse dans X , c’est un polynôme qui s’identifie canoniquement à la classe d’Euler équivariante usuelle, mais, réciproquement, lorsque la classe d’Euler équivariante est polynomiale, il n’est pas toujours...

Currently displaying 241 – 260 of 1712