Motivic tubular neighborhoods.
In this note multiple point Seshadri constants measuring the positivity of ample line bundles on complex projective varieties at a finite number of points are defined. A lower bound which is asymptotically optimal for a large number of points is proven for the constant at very general points. As an application estimates on the number of sections in adjoint linear systems are deduced.
We generalize Nakamaye’s description, via intersection theory, of the augmented base locus of a big and nef divisor on a normal pair with log-canonical singularities or, more generally, on a normal variety with non-lc locus of dimension . We also generalize Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa’s description, in terms of valuations, of the subvarieties of the restricted base locus of a big divisor on a normal pair with klt singularities.
Let be a field and be the Grassmannian of -dimensional linear subspaces of . A map is called nesting if for every . Glover, Homer and Stong showed that there are no continuous nesting maps except for a few obvious ones. We prove a similar result for algebraic nesting maps , where is an algebraically closed field of arbitrary characteristic. For this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space .
Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.