Compactification of degenerate abelian schemes over a regular divisor. (Compactification de schémes Abéliens dégénérant au-dessus d'un diviseur régulier.)
Soit un revêtement ramifié de défini sur . Lorsqu’on s’intéresse aux propriétés de rationalité de sur les les corps de nombres, on peut soit exiger que la base soit , soit l’autoriser à être une courbe de genre . Nous comparons ces deux points de vue pour les revêtements non ramifiés en dehors de
Soit un modèle entier en un premier d’une variété de Shimura de type PEL, ayant bonne réduction associée à un groupe réductif . On peut associer aux -représentations du groupe deux types de faisceaux : des cristaux sur la fibre spéciale de , et des systèmes locaux pour la topologie étale sur la fibre générique. Nous établissons un théorème de comparaison entre la cohomologie de ces deux types de faisceaux.
We present a panorama of comparison theorems between algebraic and analytic De Rham cohomology with algebraic connections as coefficients. These theorems have played an important role in the development of -module theory, in particular in the study of their ramification properties (irregularity...). In part I, we concentrate on the case of regular coefficients and sketch the new proof of these theorems given by F. Baldassarri and the author, which is of elementary nature and unifies the complex...
We investigate Grothendieck’s pairing on component groups of abelian varieties from the viewpoint of rigid uniformization theory. Under the assumption that the pairing is perfect, we show that the filtrations, as introduced by Lorenzini and in a more general way by Bosch and Xarles, are dual to each other. Furthermore, the methods yield some progress on the perfectness of the pairing itself, in particular, for abelian varieties with potentially multiplicative reduction.
Nous établissons une version de la conjecture de Manin pour le plan projectif éclaté en trois points alignés, le corps de base étant un corps global de caractéristique positive.
Let be an elliptic curve having complex multiplication by a given quadratic order of an imaginary quadratic field . The field of definition of is the ring class field of the order. If the prime splits completely in , then we can reduce modulo one the factors of and get a curve defined over . The trace of the Frobenius of is known up to sign and we need a fast way to find this sign, in the context of the Elliptic Curve Primality Proving algorithm (ECPP). For this purpose, we propose...