Displaying 201 – 220 of 1550

Showing per page

Comparaison de deux notions de rationalité d'un dessin d'enfant

Layla Pharamond dit d'Costa (2001)

Journal de théorie des nombres de Bordeaux

Soit f un revêtement ramifié de 𝐏 1 défini sur 𝐐 ¯ . Lorsqu’on s’intéresse aux propriétés de rationalité de f sur les les corps de nombres, on peut soit exiger que la base soit 𝐏 1 , soit l’autoriser à être une courbe de genre 0 . Nous comparons ces deux points de vue pour les revêtements non ramifiés en dehors de 0 , 1 ,

Comparaison entre cohomologie cristalline et cohomologie étale p -adique sur certaines variétés de Shimura

Sandra Rozensztajn (2009)

Bulletin de la Société Mathématique de France

Soit X un modèle entier en un premier p d’une variété de Shimura de type PEL, ayant bonne réduction associée à un groupe réductif G . On peut associer aux p -représentations du groupe G deux types de faisceaux : des cristaux sur la fibre spéciale de X , et des systèmes locaux pour la topologie étale sur la fibre générique. Nous établissons un théorème de comparaison entre la cohomologie de ces deux types de faisceaux.

Comparison theorems between algebraic and analytic De Rham cohomology (with emphasis on the p -adic case)

Yves André (2004)

Journal de Théorie des Nombres de Bordeaux

We present a panorama of comparison theorems between algebraic and analytic De Rham cohomology with algebraic connections as coefficients. These theorems have played an important role in the development of 𝒟 -module theory, in particular in the study of their ramification properties (irregularity...). In part I, we concentrate on the case of regular coefficients and sketch the new proof of these theorems given by F. Baldassarri and the author, which is of elementary nature and unifies the complex...

Component groups of abelian varieties and Grothendieck's duality conjecture

Siegfried Bosch (1997)

Annales de l'institut Fourier

We investigate Grothendieck’s pairing on component groups of abelian varieties from the viewpoint of rigid uniformization theory. Under the assumption that the pairing is perfect, we show that the filtrations, as introduced by Lorenzini and in a more general way by Bosch and Xarles, are dual to each other. Furthermore, the methods yield some progress on the perfectness of the pairing itself, in particular, for abelian varieties with potentially multiplicative reduction.

Computing the cardinality of CM elliptic curves using torsion points

François Morain (2007)

Journal de Théorie des Nombres de Bordeaux

Let / ¯ be an elliptic curve having complex multiplication by a given quadratic order of an imaginary quadratic field 𝕂 . The field of definition of is the ring class field Ω of the order. If the prime p splits completely in Ω , then we can reduce modulo one the factors of p and get a curve E defined over 𝔽 p . The trace of the Frobenius of E is known up to sign and we need a fast way to find this sign, in the context of the Elliptic Curve Primality Proving algorithm (ECPP). For this purpose, we propose...

Currently displaying 201 – 220 of 1550