Page 1 Next

Displaying 1 – 20 of 153

Showing per page

A Bogomolov property for curves modulo algebraic subgroups

Philipp Habegger (2009)

Bulletin de la Société Mathématique de France

Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least 2 . The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.

A computer algebra solution to a problem in finite groups.

Gert-Martin Greuel (2003)

Revista Matemática Iberoamericana

We report on a partial solution of the conjecture that the class of finite solvable groups can be characterised by 2-variable identities. The proof requires pieces from number theory, algebraic geometry, singularity theory and computer algebra. The computations were carried out using the computer algebra system SINGULAR.

A descent map for curves with totally degenerate semi-stable reduction

Shahed Sharif (2013)

Journal de Théorie des Nombres de Bordeaux

Let K be a local field of residue characteristic p . Let C be a curve over K whose minimal proper regular model has totally degenerate semi-stable reduction. Under certain hypotheses, we compute the prime-to- p rational torsion subgroup on the Jacobian of C . We also determine divisibility of line bundles on C , including rationality of theta characteristics and higher spin structures. These computations utilize arithmetic on the special fiber of C .

A dimension formula for Ekedahl-Oort strata

Ben Moonen (2004)

Annales de l’institut Fourier

We study the Ekedahl-Oort stratification on moduli spaces of PEL type. The strata are indexed by the classes in a Weyl group modulo a subgroup, and each class has a distinguished representative of minimal length. The main result of this paper is that the dimension of a stratum equals the length of the corresponding Weyl group element. We also discuss some explicit examples.

A dynamical Shafarevich theorem for twists of rational morphisms

Brian Justin Stout (2014)

Acta Arithmetica

Let K denote a number field, S a finite set of places of K, and ϕ: ℙⁿ → ℙⁿ a rational morphism defined over K. The main result of this paper states that there are only finitely many twists of ϕ defined over K which have good reduction at all places outside S. This answers a question of Silverman in the affirmative.

A family of varieties with exactly one pointless rational fiber

Bianca Viray (2010)

Journal de Théorie des Nombres de Bordeaux

We construct a concrete example of a 1 -parameter family of smooth projective geometrically integral varieties over an open subscheme of 1 such that there is exactly one rational fiber with no rational points. This makes explicit a construction of Poonen.

A finiteness result for the compactly supported cohomology of rigid analytic varieties, II

Roland Huber (2007)

Annales de l’institut Fourier

Let h : X Y be a separated morphism of adic spaces of finite type over a non-archimedean field k with Y affinoid and of dimension 1 , let L be a locally closed constructible subset of X and let g : ( X , L ) Y be the morphism of pseudo-adic spaces induced by h . Let A be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of k and let F be a constant A -module of finite type on ( X , L ) e ´ t . There is a natural class 𝒞 ( Y ) of A -modules on Y e ´ t generated by the constructible A -modules...

A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula

Kai Köhler, Damien Roessler (2002)

Annales de l’institut Fourier

This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.

Currently displaying 1 – 20 of 153

Page 1 Next