The search session has expired. Please query the service again.
In his seminal paper on arithmetic surfaces Faltings introduced a new invariant associated to compact Riemann surfaces , nowadays called Faltings’s delta function and here denoted by . For a given compact Riemann surface of genus , the invariant is roughly given as minus the logarithm of the distance with respect to the Weil-Petersson metric of the point in the moduli space of genus curves determined by to its boundary . In this paper we begin by revisiting a formula derived in [14],...
Let be a global field of characteristic not 2. Let be a symmetric variety defined over and a finite set of places of . We obtain counting and equidistribution results for the S-integral points of . Our results are effective when is a number field.
Let be a fixed algebraic variety defined by polynomials in variables with integer coefficients. We show that there exists a constant such that for almost all primes for all but at most points on the reduction of modulo at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.
We give a family of elliptic curves, depending on two nonzero rational parameters and , such that the following statement holds: let be an elliptic curve and let be its 3-torsion subgroup. This group verifies if and only if belongs to .Furthermore, we consider the problem of the local-global divisibility by 9 for points of elliptic curves. The number 9 is one of the few exceptional powers of primes, for which an answer to the local-global divisibility is unknown in the case of such...
Currently displaying 1 –
20 of
73