Page 1 Next

Displaying 1 – 20 of 108

Showing per page

S -integral solutions to a Weierstrass equation

Benjamin M. M. de Weger (1997)

Journal de théorie des nombres de Bordeaux

The rational solutions with as denominators powers of 2 to the elliptic diophantine equation y 2 = x 3 - 228 x + 848 are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term ( S -) unit equations with special properties, that are solved by linear forms in real and p -adic logarithms.

Self-intersection of the relative dualizing sheaf on modular curves X 1 ( N )

Hartwig Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

Let N be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than 4 . Our main theorem is an asymptotic formula solely in terms of N for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves X 1 ( N ) / . From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian J 1 ( N ) / of X 1 ( N ) / , and, for sufficiently large N , an effective version of Bogomolov’s conjecture for X 1 ( N ) / .

Semistable reduction and torsion subgroups of abelian varieties

Alice Silverberg, Yuri G. Zarhin (1995)

Annales de l'institut Fourier

The main result of this paper implies that if an abelian variety over a field F has a maximal isotropic subgroup of n -torsion points all of which are defined over F , and n 5 , then the abelian variety has semistable reduction away from n . This result can be viewed as an extension of Raynaud’s theorem that if an abelian variety and all its n -torsion points are defined over a field F and n 3 , then the abelian variety has semistable reduction away from n . We also give information about the Néron models...

Shimura varieties with Γ 1 ( p ) -level via Hecke algebra isomorphisms: the Drinfeld case

Thomas J. Haines, Michael Rapoport (2012)

Annales scientifiques de l'École Normale Supérieure

We study the local factor at  p of the semi-simple zeta function of a Shimura variety of Drinfeld type for a level structure given at  p by the pro-unipotent radical of an Iwahori subgroup. Our method is an adaptation to this case of the Langlands-Kottwitz counting method. We explicitly determine the corresponding test functions in suitable Hecke algebras, and show their centrality by determining their images under the Hecke algebra isomorphisms of Goldstein, Morris, and Roche.

Currently displaying 1 – 20 of 108

Page 1 Next