Page 1

Displaying 1 – 12 of 12

Showing per page

Beyond two criteria for supersingularity: coefficients of division polynomials

Christophe Debry (2014)

Journal de Théorie des Nombres de Bordeaux

Let f ( x ) be a cubic, monic and separable polynomial over a field of characteristic p 3 and let E be the elliptic curve given by y 2 = f ( x ) . In this paper we prove that the coefficient at x 1 2 p ( p - 1 ) in the p –th division polynomial of E equals the coefficient at x p - 1 in f ( x ) 1 2 ( p - 1 ) . For elliptic curves over a finite field of characteristic p , the first coefficient is zero if and only if E is supersingular, which by a classical criterion of Deuring (1941) is also equivalent to the vanishing of the second coefficient. So the zero loci...

Borne polynomiale pour le nombre de points rationnels des courbes

Gaël Rémond (2011)

Journal de Théorie des Nombres de Bordeaux

Soit F un polynôme en deux variables, de degré D et à coefficients entiers dans [ - M , M ] pour M 3 . Alors le nombre de zéros rationnels de F est soit infini soit plus petit que M 2 3 D 2 . Nous montrons aussi une version plus générale sur les corps de nombres.

Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings

Bertrand Rémy, Amaury Thuillier, Annette Werner (2010)

Annales scientifiques de l'École Normale Supérieure

We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group G over a suitable non-Archimedean field k we define a map from the Bruhat-Tits building ( G , k ) to the Berkovich analytic space G an associated with G . Composing this map with the projection of G an to its flag varieties, we define a family of compactifications of ( G , k ) . This generalizes results by Berkovich in the case of split groups. Moreover,...

Currently displaying 1 – 12 of 12

Page 1