On the Normal Bundle of Curves on Complete Intersection Surfaces.
Let be a projective Frobenius split variety with a fixed Frobenius splitting . In this paper we give a sharp uniform bound on the number of subvarieties of which are compatibly Frobenius split with . Similarly, we give a bound on the number of prime -ideals of an -finite -pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.
We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.
Let be a complex Fano manifold of arbitrary dimension, and a prime divisor in . We consider the image of in under the natural push-forward of -cycles. We show that . Moreover if , then either where is a Del Pezzo surface, or and has a fibration in Del Pezzo surfaces onto a Fano manifold such that .