Previous Page 13

Displaying 241 – 260 of 260

Showing per page

Un théorème de Spitzer-Stone fort pour une matrice de Toeplitz à  symbole singulier défini par une classe de fonctions analytiques

Philippe Rambour, Jean-Marc Rinkel (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article nous donnons une formule pour les coefficients de l’inverse des matrices de Toeplitz respectivement de symboles f ( e i θ ) = ( 1 - cos θ ) | f 1 ( e i θ ) | 2 (cas singulier) et | f 1 ( e i θ ) | 2 (cas régulier) où f 1 est une fonction appartenant à  une classe de fonctions holomorphes sur un disque ouvert contenant le tore 𝕋 et sans zéro sur 𝕋 . Un cas particulier défini par f 1 = Q P P et Q sont des polynômes sans zéro sur 𝕋 est traité. Dans le cas où le symbole est singulier, cette formule présente l’intérêt d’avoir un second ordre. Dans tous les...

Unicyclic graphs with bicyclic inverses

Swarup Kumar Panda (2017)

Czechoslovak Mathematical Journal

A graph is nonsingular if its adjacency matrix A ( G ) is nonsingular. The inverse of a nonsingular graph G is a graph whose adjacency matrix is similar to A ( G ) - 1 via a particular type of similarity. Let denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in which possess unicyclic inverses. We present a characterization of unicyclic graphs in which possess bicyclic inverses.

Weighted w -core inverses in rings

Liyun Wu, Huihui Zhu (2023)

Czechoslovak Mathematical Journal

Let R be a unital * -ring. For any a , s , t , v , w R we define the weighted w -core inverse and the weighted dual s -core inverse, extending the w -core inverse and the dual s -core inverse, respectively. An element a R has a weighted w -core inverse with the weight v if there exists some x R such that a w x v x = x , x v a w a = a and ( a w x ) * = a w x . Dually, an element a R has a weighted dual s -core inverse with the weight t if there exists some y R such that y t y s a = y , a s a t y = a and ( y s a ) * = y s a . Several characterizations of weighted w -core invertible and weighted dual s -core invertible...

When does the inverse have the same sign pattern as the transpose?

Carolyn A. Eschenbach, Frank J. Hall, Deborah L. Harrell, Zhongshan Li (1999)

Czechoslovak Mathematical Journal

By a sign pattern (matrix) we mean an array whose entries are from the set { + , - , 0 } . The sign patterns A for which every real matrix with sign pattern A has the property that its inverse has sign pattern A T are characterized. Sign patterns A for which some real matrix with sign pattern A has that property are investigated. Some fundamental results as well as constructions concerning such sign pattern matrices are provided. The relation between these sign patterns and the sign patterns of orthogonal matrices...

Currently displaying 241 – 260 of 260

Previous Page 13