Un algorithme d'inversion pour les matrices de Toeplitz par blocs
Dans cet article nous donnons une formule pour les coefficients de l’inverse des matrices de Toeplitz respectivement de symboles (cas singulier) et (cas régulier) où est une fonction appartenant à une classe de fonctions holomorphes sur un disque ouvert contenant le tore et sans zéro sur . Un cas particulier défini par où et sont des polynômes sans zéro sur est traité. Dans le cas où le symbole est singulier, cette formule présente l’intérêt d’avoir un second ordre. Dans tous les...
A graph is nonsingular if its adjacency matrix is nonsingular. The inverse of a nonsingular graph is a graph whose adjacency matrix is similar to via a particular type of similarity. Let denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in which possess unicyclic inverses. We present a characterization of unicyclic graphs in which possess bicyclic inverses.
Let be a unital -ring. For any we define the weighted -core inverse and the weighted dual -core inverse, extending the -core inverse and the dual -core inverse, respectively. An element has a weighted -core inverse with the weight if there exists some such that , and . Dually, an element has a weighted dual -core inverse with the weight if there exists some such that , and . Several characterizations of weighted -core invertible and weighted dual -core invertible...
By a sign pattern (matrix) we mean an array whose entries are from the set . The sign patterns for which every real matrix with sign pattern has the property that its inverse has sign pattern are characterized. Sign patterns for which some real matrix with sign pattern has that property are investigated. Some fundamental results as well as constructions concerning such sign pattern matrices are provided. The relation between these sign patterns and the sign patterns of orthogonal matrices...