Displaying 261 – 280 of 501

Showing per page

On decomposition of k-tridiagonal ℓ-Toeplitz matrices and its applications

A. Ohashi, T. Sogabe, T.S. Usuda (2015)

Special Matrices

We consider a k-tridiagonal ℓ-Toeplitz matrix as one of generalizations of a tridiagonal Toeplitz matrix. In the present paper, we provide a decomposition of the matrix under a certain condition. By the decomposition, the matrix is easily analyzed since one only needs to analyze the small matrix obtained from the decomposition. Using the decomposition, eigenpairs and arbitrary integer powers of the matrix are easily shown as applications.

On distance Laplacian energy in terms of graph invariants

Hilal A. Ganie, Rezwan Ul Shaban, Bilal A. Rather, Shariefuddin Pirzada (2023)

Czechoslovak Mathematical Journal

For a simple connected graph G of order n having distance Laplacian eigenvalues ρ 1 L ρ 2 L ρ n L , the distance Laplacian energy DLE ( G ) is defined as DLE ( G ) = i = 1 n | ρ i L - 2 W ( G ) / n | , where W ( G ) is the Wiener index of G . We obtain a relationship between the Laplacian energy and the distance Laplacian energy for graphs with diameter 2. We obtain lower bounds for the distance Laplacian energy DLE ( G ) in terms of the order n , the Wiener index W ( G ) , the independence number, the vertex connectivity number and other given parameters. We characterize the extremal graphs...

On eigenvectors of mixed graphs with exactly one nonsingular cycle

Yi-Zheng Fan (2007)

Czechoslovak Mathematical Journal

Let G be a mixed graph. The eigenvalues and eigenvectors of G are respectively defined to be those of its Laplacian matrix. If G is a simple graph, [M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the eigenvectors of G corresponding to its second smallest eigenvalue (also called the algebraic connectivity of G ). For G being a general mixed graph with...

On Laplacian eigenvalues of connected graphs

Igor Ž. Milovanović, Emina I. Milovanović, Edin Glogić (2015)

Czechoslovak Mathematical Journal

Let G be an undirected connected graph with n , n 3 , vertices and m edges with Laplacian eigenvalues μ 1 μ 2 μ n - 1 > μ n = 0 . Denote by μ I = μ r 1 + μ r 2 + + μ r k , 1 k n - 2 , 1 r 1 < r 2 < < r k n - 1 , the sum of k arbitrary Laplacian eigenvalues, with μ I 1 = μ 1 + μ 2 + + μ k and μ I n = μ n - k + + μ n - 1 . Lower bounds of graph invariants μ I 1 - μ I n and μ I 1 / μ I n are obtained. Some known inequalities follow as a special case.

On log-subharmonicity of singular values of matrices

Bernard Aupetit (1997)

Studia Mathematica

Let F be an analytic function from an open subset Ω of the complex plane into the algebra of n×n matrices. Denoting by s 1 , . . . , s n the decreasing sequence of singular values of a matrix, we prove that the functions l o g s 1 ( F ( λ ) ) + . . . + l o g s k ( F ( λ ) ) and l o g + s 1 ( F ( λ ) ) + . . . + l o g + s k ( F ( λ ) ) are subharmonic on Ω for 1 ≤ k ≤ n.

On melancholic magic squares

Götz Trenkler, Dietrich Trenkler (2013)

Discussiones Mathematicae Probability and Statistics

Starting with Dürer's magic square which appears in the well-known copper plate engraving Melencolia we consider the class of melancholic magic squares. Each member of this class exhibits the same 86 patterns of Dürer's magic square and is magic again. Special attention is paid to the eigenstructure of melancholic magic squares, their group inverse and their Moore-Penrose inverse. It is seen how the patterns of the original Dürer square to a large extent are passed down also to the inverses of the...

Currently displaying 261 – 280 of 501