The Laplacian spread of tricyclic graphs.
A graph in a certain graph class is called minimizing if the least eigenvalue of its adjacency matrix attains the minimum among all graphs in that class. Bell et al. have identified a subclass within the connected graphs of order n and size m in which minimizing graphs belong (the complements of such graphs are either disconnected or contain a clique of size n/2 ). In this paper we discuss the minimizing graphs of a special class of graphs of order n whose complements are connected and contains...
The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, M1, was understood fully (froma combinatorial perspective) by C.R. Johnson, A. Leal-Duarte (Linear Algebra and Multilinear Algebra 46 (1999) 139-144). Among the possible multiplicity lists for the eigenvalues of Hermitian matrices whose graph is a tree, we focus upon M2, the maximum value of the sum of the two largest multiplicities when the largest multiplicity is M1. Upper and lower bounds are given for M2. Using a combinatorial...
In this paper we observe that the minimal signless Laplacian spectral radius is obtained uniquely at the kite graph PKn−ω,ω among all connected graphs with n vertices and clique number ω. In addition, we show that the spectral radius μ of PKm,ω (m ≥ 1) satisfies [...] More precisely, for m > 1, μ satisfies the equation [...] where [...] and [...] . At last the spectral radius μ(PK∞,ω) of the infinite graph PK∞,ω is also discussed.
Suppose that is a real symmetric matrix of order . Denote by the nullity of . For a nonempty subset of , let be the principal submatrix of obtained from by deleting the rows and columns indexed by . When , we call a P-set of . It is known that every P-set of contains at most elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step...
In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.
The Wigner Theorem states that the statistical distribution of the eigenvalues of a random Hermitian matrix converges to the semi-circular law as the dimension goes to infinity. It is possible to establish this result by using harmonic analysis on the Heisenberg group. In fact this convergence corresponds to the topology of the set of spherical functions associated to the action of the unitary group on the Heisenberg group.
We give a classification of linear endomorphisms up to topological conjugacy.