Sur le problème inverse des valeurs propres.
The inertia of an by symmetric sign pattern is called maximal when it is not a proper subset of the inertia of another symmetric sign pattern of order . In this note we classify all the maximal inertias for symmetric sign patterns of order , and identify symmetric sign patterns with maximal inertias by using a rank-one perturbation.
We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly...
2000 Mathematics Subject Classification: 15A29.In this paper we introduced a notion of the generalized spectral function for a matrix J = (gk,l)k,l = 0 Ґ, gk,l О C, such that gk,l = 0, if |k-l | > N; gk,k+N = 1, and gk,k-N № 0. Here N is a fixed positive integer. The direct and inverse spectral problems for such matrices are stated and solved. An integral representation for the generalized spectral function is obtained.
In this article we study in detail a family of random matrix ensembles which are obtained from random permutations matrices (chosen at random according to the Ewens measure of parameter ) by replacing the entries equal to one by more general non-vanishing complex random variables. For these ensembles, in contrast with more classical models as the Gaussian Unitary Ensemble, or the Circular Unitary Ensemble, the eigenvalues can be very explicitly computed by using the cycle structure of the permutations....
Given a graph , if there is no nonisomorphic graph such that and have the same signless Laplacian spectra, then we say that is -DS. In this paper we show that every fan graph is -DS, where and .
In this article the rank-k numerical range ∧k (A) of an entrywise nonnegative matrix A is investigated. Extending the notion of elements of maximum modulus in ∧k (A), we examine their location on the complex plane. Further, an application of this theory to ∧k (L(λ)) of a Perron polynomial L(λ) is elaborated via its companion matrix C L.