Displaying 41 – 60 of 205

Showing per page

Convergence of Rump's method for computing the Moore-Penrose inverse

Yunkun Chen, Xinghua Shi, Yi Min Wei (2016)

Czechoslovak Mathematical Journal

We extend Rump's verified method (S. Oishi, K. Tanabe, T. Ogita, S. M. Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for computing the...

Co-solutions of algebraic matrix equations and higher order singular regular boundary value problems

Lucas Jódar, Enrique A. Navarro (1994)

Applications of Mathematics

In this paper we obtain existence conditions and a closed form of the general solution of higher order singular regular boundary value problems. The approach is based on the concept of co-solution of algebraic matrix equations of polynomial type that permits the treatment of the problem without considering an extended first order system as it has been done in the known literature.

Discrete-time symmetric polynomial equations with complex coefficients

Didier Henrion, Jan Ježek, Michael Šebek (2002)

Kybernetika

Discrete-time symmetric polynomial equations with complex coefficients are studied in the scalar and matrix case. New theoretical results are derived and several algorithms are proposed and evaluated. Polynomial reduction algorithms are first described to study theoretical properties of the equations. Sylvester matrix algorithms are then developed to solve numerically the equations. The algorithms are implemented in the Polynomial Toolbox for Matlab.

Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics

Tatiana Bandman, Shelly Garion, Boris Kunyavskiĭ (2014)

Open Mathematics

We present a survey of results on word equations in simple groups, as well as their analogues and generalizations, which were obtained over the past decade using various methods: group-theoretic and coming from algebraic and arithmetic geometry, number theory, dynamical systems and computer algebra. Our focus is on interrelations of these machineries which led to numerous spectacular achievements, including solutions of several long-standing problems.

Estimation of the noncentrality matrix of a noncentral Wishart distribution with unit scale matrix. A matrix generalization of Leung's domination result.

Heinz Neudecker (2004)

SORT

The main aim is to estimate the noncentrality matrix of a noncentral Wishart distribution. The method used is Leung's but generalized to a matrix loss function. Parallelly Leung's scalar noncentral Wishart identity is generalized to become a matrix identity. The concept of Löwner partial ordering of symmetric matrices is used.

Extremal inverse eigenvalue problem for matrices described by a connected unicyclic graph

Bijoya Bardhan, Mausumi Sen, Debashish Sharma (2024)

Applications of Mathematics

In this paper, we deal with the construction of symmetric matrix whose corresponding graph is connected and unicyclic using some pre-assigned spectral data. Spectral data for the problem consist of the smallest and the largest eigenvalues of each leading principal submatrices. Inverse eigenvalue problem (IEP) with this set of spectral data is generally known as the extremal IEP. We use a standard scheme of labeling the vertices of the graph, which helps in getting a simple relation between the characteristic...

Fermat's Equation in Matrices

Khazanov, Alex (1995)

Serdica Mathematical Journal

The Fermat equation is solved in integral two by two matrices of determinant one as well as in finite order integral three by three matrices.

Focal power.

Hartwig, Robert E., Maroulas, John (2005)

ELA. The Electronic Journal of Linear Algebra [electronic only]

Currently displaying 41 – 60 of 205