-point invariants of real geometries.
Let be the field of real or complex numbers. In this note we characterize all inner product norms on for which the norm on is monotonic.
In this paper we study -EP matrices, as a generalization of EP-matrices in indefinite inner product spaces, with respect to indefinite matrix product. We give some properties concerning EP and -EP matrices and find connection between them. Also, we present some results for reverse order law for Moore-Penrose inverse in indefinite setting. Finally, we deal with the star partial ordering and improve some results given in the “EP matrices in indefinite inner product spaces” (2012), by relaxing some...
We give a sufficient condition on a C*-algebra to ensure that every weakly compact operator into an arbitrary Banach space can be approximated by norm attaining operators and that every continuous bilinear form can be approximated by norm attaining bilinear forms. Moreover we prove that the class of C*-algebras satisfying this condition includes the group C*-algebras of compact groups.
Using the fundamental notions of the quaternionic analysis we show that there are no 4-dimensional almost Kähler manifolds which are locally conformally flat with a metric of a special form.
Consider a non-centered matrix with a separable variance profile: Matrices and are non-negative deterministic diagonal, while matrix is deterministic, and is a random matrix with complex independent and identically distributed random variables, each with mean zero and variance one. Denote by the resolvent associated to , i.e. Given two sequences of deterministic vectors and with bounded Euclidean norms, we study the limiting behavior of the random bilinear form: as the dimensions...