Displaying 21 – 40 of 85

Showing per page

Extreme points of the complex binary trilinear ball

Fernando Cobos, Thomas Kühn, Jaak Peetre (2000)

Studia Mathematica

We characterize all the extreme points of the unit ball in the space of trilinear forms on the Hilbert space 2 . This answers a question posed by R. Grząślewicz and K. John [7], who solved the corresponding problem for the real Hilbert space 2 . As an application we determine the best constant in the inequality between the Hilbert-Schmidt norm and the norm of trilinear forms.

Finiteness results for Abelian tree models

Jan Draisma, Rob H. Eggermont (2015)

Journal of the European Mathematical Society

Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant§ refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the Zariski closures of these models are defined by polynomial equations of bounded degree, independent of the tree. Moreover, we show that there exists a polynomial-time membership test for that Zariski closure....

Generalized symmetry classes of tensors

Gholamreza Rafatneshan, Yousef Zamani (2020)

Czechoslovak Mathematical Journal

Let V be a unitary space. For an arbitrary subgroup G of the full symmetric group S m and an arbitrary irreducible unitary representation Λ of G , we study the generalized symmetry class of tensors over V associated with G and Λ . Some important properties of this vector space are investigated.

Interval multi-linear systems for tensors in the max-plus algebra and their application in solving the job shop problem

Sedighe Khaleghzade, Mostafa Zangiabadi, Aljoša Peperko, Masoud Hajarian (2022)

Kybernetika

In this paper, we propose the notions of the max-plus algebra of the interval tensors, which can be used for the extension of interval linear systems to interval multi-linear systems in the max-plus algebra. Some properties and basic results of interval multi-linear systems in max-plus algebra are derived. An algorithm is developed for computing a solution of the multi-linear systems in the max-plus algebra. Necessary and sufficient conditions for the interval multi-linear systems for weak solvability...

Low rank Tucker-type tensor approximation to classical potentials

B. Khoromskij, V. Khoromskaia (2007)

Open Mathematics

This paper investigates best rank-(r 1,..., r d) Tucker tensor approximation of higher-order tensors arising from the discretization of linear operators and functions in ℝd. Super-convergence of the best rank-(r 1,..., r d) Tucker-type decomposition with respect to the relative Frobenius norm is proven. Dimensionality reduction by the two-level Tucker-to-canonical approximation is discussed. Tensor-product representation of basic multi-linear algebra operations is considered, including inner, outer...

Low-rank tensor representation of Slater-type and Hydrogen-like orbitals

Martin Mrovec (2017)

Applications of Mathematics

The paper focuses on a low-rank tensor structured representation of Slater-type and Hydrogen-like orbital basis functions that can be used in electronic structure calculations. Standard packages use the Gaussian-type basis functions which allow us to analytically evaluate the necessary integrals. Slater-type and Hydrogen-like orbital functions are physically more appropriate, but they are not analytically integrable. A numerical integration is too expensive when using the standard discretization...

Matrix inequalities involving the Khatri-Rao product

Xian Zhang, Zhong Peng Yang, Chong-Guang Cao (2002)

Archivum Mathematicum

We extend three inequalities involving the Hadamard product in three ways. First, the results are extended to any partitioned blocks Hermitian matrices. Second, the Hadamard product is replaced by the Khatri-Rao product. Third, the necessary and sufficient conditions under which equalities occur are presented. Thereby, we generalize two inequalities involving the Khatri–Rao product.

Maximizing Spectral Radii of Uniform Hypergraphs with Few Edges

Yi-Zheng Fan, Ying-Ying Tan, Xi-Xi Peng, An-Hong Liu (2016)

Discussiones Mathematicae Graph Theory

In this paper we investigate the hypergraphs whose spectral radii attain the maximum among all uniform hypergraphs with given number of edges. In particular we characterize the hypergraph(s) with maximum spectral radius over all unicyclic hypergraphs, linear or power unicyclic hypergraphs with given girth, linear or power bicyclic hypergraphs, respectively.

Currently displaying 21 – 40 of 85