Admissible functions and asymptotics for labelled structures by number of components.
The paper surveys some recent results on iterative aggregation/disaggregation methods (IAD) for computing stationary probability vectors of stochastic matrices and solutions of Leontev linear systems. A particular attention is paid to fast IAD methods.
We discuss some numerical ranges for Lipschitz continuous nonlinear operators and their relations to spectral sets. In particular, we show that the spectrum defined by Kachurovskij (1969) for Lipschitz continuous operators is contained in the so-called polynomial hull of the numerical range introduced by Rhodius (1984).
Si studiano, nell'ambito della teoria delle forme trilineari, le cosidette -forme simmetriche, pervenendo ad un teorema di struttura utile per una possibile classificazione, ancora inesistente, di tali -forme.
For a sequence x ∈ ℓ₁∖c₀₀, one can consider the set E(x) of all subsums of the series . Guthrie and Nymann proved that E(x) is one of the following types of sets: () a finite union of closed intervals; () homeomorphic to the Cantor set; homeomorphic to the set T of subsums of where b(2n-1) = 3/4ⁿ and b(2n) = 2/4ⁿ. Denote by ℐ, and the sets of all sequences x ∈ ℓ₁∖c₀₀ such that E(x) has the property (ℐ), () and ( ), respectively. We show that ℐ and are strongly -algebrable and is -lineable. We...
We give some algebraic conditions for -tough graphs in terms of the Laplacian eigenvalues and adjacency eigenvalues of graphs.
In this article fibrations of associative algebras on smooth manifolds are investigated. Sections of these fibrations are spinor, co spinor and vector fields with respect to a gauge group. Invariant differentiations are constructed and curvature and torsion of invariant differentiations are calculated.
Let be a -connected graph with . A hinge is a subset of vertices whose deletion from yields a disconnected graph. We consider the algebraic connectivity and Fiedler vectors of such graphs, paying special attention to the signs of the entries in Fiedler vectors corresponding to vertices in a hinge, and to vertices in the connected components at a hinge. The results extend those in Fiedler’s papers Algebraic connectivity of graphs (1973), A property of eigenvectors of nonnegative symmetric...
We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders,...
We consider a decision-making problem to evaluate absolute ratings of alternatives that are compared in pairs according to two criteria, subject to box constraints on the ratings. The problem is formulated as the log-Chebyshev approximation of two pairwise comparison matrices by a common consistent matrix (a symmetrically reciprocal matrix of unit rank), to minimize the approximation errors for both matrices simultaneously. We rearrange the approximation problem as a constrained bi-objective optimization...