Displaying 81 – 100 of 230

Showing per page

Some new bounds of the minimum eigenvalue for the Hadamard product of anM-matrix and an inverseM-matrix

Jianxing Zhao, Caili Sang (2016)

Open Mathematics

Some convergent sequences of the lower bounds of the minimum eigenvalue for the Hadamard product of a nonsingular M-matrix B and the inverse of a nonsingular M-matrix A are given by using Brauer’s theorem. It is proved that these sequences are monotone increasing, and numerical examples are given to show that these sequences could reach the true value of the minimum eigenvalue in some cases. These results in this paper improve some known results.

Some norm inequalities for special Gram matrices

Ramazan Türkmen, Osman Kan, Hasan Gökbas (2016)

Special Matrices

In this paper we firstly give majorization relations between the vectors Fn = {f0, f1, . . . , fn−1},Ln = {l0, l1, . . . , ln−1} and Pn = {p0, p1, . . . , pn−1} which constructed with fibonacci, lucas and pell numbers. Then we give upper and lower bounds for determinants, Euclidean norms and Spectral norms of Gram matrices GF=〈Fn,Fni〉, GL=〈Ln,Lni〉, GP=〈Pn,Pni〉, GFL=〈Fn,Lni〉, GFP=〈Fn,Pni〉.

Some partial differential equations in Clifford analysis

Elena Obolashvili (1996)

Banach Center Publications

Using Clifford analysis in a multidimensional space some elliptic, hyperbolic and parabolic systems of partial differential equations are constructed, which are related to the well-known classical equations. To obtain parabolic systems Clifford algebra is modified and some corresponding differential operator is constructed. For systems obtained the boundary and initial value problems are solved.

Some properties complementary to Brualdi-Li matrices

Chuanlong Wang, Xuerong Yong (2015)

Czechoslovak Mathematical Journal

In this paper we derive new properties complementary to an 2 n × 2 n Brualdi-Li tournament matrix B 2 n . We show that B 2 n has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of B 2 n is also determined. Related results obtained in previous articles are proven to be corollaries.

Some properties of generalized distance eigenvalues of graphs

Yuzheng Ma, Yan Ling Shao (2024)

Czechoslovak Mathematical Journal

Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) . We obtain some...

Some properties of N-supercyclic operators

P. S. Bourdon, N. S. Feldman, J. H. Shapiro (2004)

Studia Mathematica

Let T be a continuous linear operator on a Hausdorff topological vector space 𝓧 over the field ℂ. We show that if T is N-supercyclic, i.e., if 𝓧 has an N-dimensional subspace whose orbit under T is dense in 𝓧, then T* has at most N eigenvalues (counting geometric multiplicity). We then show that N-supercyclicity cannot occur nontrivially in the finite-dimensional setting: the orbit of an N-dimensional subspace cannot be dense in an (N+1)-dimensional space. Finally, we show that a subnormal operator...

Some properties of the spectral radius of a set of matrices

Adam Czornik, Piotr Jurgas (2006)

International Journal of Applied Mathematics and Computer Science

In this paper we show new formulas for the spectral radius and the spectral subradius of a set of matrices. The advantage of our results is that we express the spectral radius of any set of matrices by the spectral radius of a set of symmetric positive definite matrices. In particular, in one of our formulas the spectral radius is expressed by singular eigenvalues of matrices, whereas in the existing results it is expressed by eigenvalues.

Some relations on Humbert matrix polynomials

Ayman Shehata (2016)

Mathematica Bohemica

The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix polynomials...

Some relations satisfied by Hermite-Hermite matrix polynomials

Ayman Shehata, Lalit Mohan Upadhyaya (2017)

Mathematica Bohemica

The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the Hermite-Hermite...

Some remarks on comparison of predictors in seemingly unrelated linear mixed models

Nesrin Güler, Melek Eriş Büyükkaya (2022)

Applications of Mathematics

In this paper, we consider a comparison problem of predictors in the context of linear mixed models. In particular, we assume a set of m different seemingly unrelated linear mixed models (SULMMs) allowing correlations among random vectors across the models. Our aim is to establish a variety of equalities and inequalities for comparing covariance matrices of the best linear unbiased predictors (BLUPs) of joint unknown vectors under SULMMs and their combined model. We use the matrix rank and inertia...

Some remarks on matrix pencil completion problems

Jean-Jacques Loiseau, Petr Zagalak, Sabine Mondié (2004)

Kybernetika

The matrix pencil completion problem introduced in [J. J. Loiseau, S. Mondié, I. Zaballa, and P. Zagalak: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998)] is reconsidered and the latest results achieved in that field are discussed.

Some remarks on operators preserving partial orders of matrices

Jan Hauke (2008)

Discussiones Mathematicae Probability and Statistics

Stępniak [Linear Algebra Appl. 151 (1991)] considered the problem of equivalence of the Löwner partial order of nonnegative definite matrices and the Löwner partial order of squares of those matrices. The paper was an important starting point for investigations of the problem of how an order between two matrices A and B from different sets of matrices can be preserved for the squares of the corresponding matrices A² and B², in the sense of the Löwner partial ordering, the star partial ordering,...

Currently displaying 81 – 100 of 230