Displaying 21 – 40 of 102

Showing per page

Initial value problem for the time dependent Schrödinger equation on the Heisenberg group

Jacek Zienkiewicz (1997)

Studia Mathematica

Let L be the full laplacian on the Heisenberg group n of arbitrary dimension n. Then for f L 2 ( n ) such that ( I - L ) s / 2 f L 2 ( n ) , s > 3/4, for a ϕ C c ( n ) we have ʃ n | ϕ ( x ) | s u p 0 < t 1 | e ( - 1 ) t L f ( x ) | 2 d x C ϕ f W s 2 . On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group n , then for every s < 1 there exists a sequence f n L 2 ( n ) and C n > 0 such that ( I - L ) s / 2 f n L 2 ( n ) and for a ϕ C c ( n ) we have ʃ n | ϕ ( x ) | s u p 0 < t 1 | e ( - 1 ) t Δ f n ( x ) | 2 d x C n f n W s 2 , l i m n C n = + .

Intégrales orbitales sur G L ( N ) et corps locaux proches

Bertrand Lemaire (1996)

Annales de l'institut Fourier

Soient F un corps local non archimédien, N un entier 2 , G _ = G L ( N ) , n un entier 1 et ( G _ ( F ) , K F n ) l’algèbre de Hecke de G _ ( F ) relative au sous-groupe de congruence modulo 𝒫 F n de G _ ( 𝒪 F ) . On prouve une formule explicite pour les intégrales orbitales elliptiques des fonctions de ( G _ ( F ) , K F n ) . Grâce à cette formule, pour γ G _ ( F ) semi-simple régulier, on produit un entier r = r ( γ , n ) n tel que pour tout corps local non archimédien F ' r -proche...

Integrating central extensions of Lie algebras via Lie 2-groups

Christoph Wockel, Chenchang Zhu (2016)

Journal of the European Mathematical Society

The purpose of this paper is to show how central extensions of (possibly infinite-dimensional) Lie algebras integrate to central extensions of étale Lie 2-groups in the sense of [Get09, Hen08]. In finite dimensions, central extensions of Lie algebras integrate to central extensions of Lie groups, a fact which is due to the vanishing of π 2 for each finite-dimensional Lie group. This fact was used by Cartan (in a slightly other guise) to construct the simply connected Lie group associated to each finite-dimensional...

Intertwined mappings

Jean Ecalle, Bruno Vallet (2004)

Annales de la Faculté des sciences de Toulouse : Mathématiques

Currently displaying 21 – 40 of 102