Generalized Intermediate Jacobians and the Theorem on Normal Functions.
Using a construction similar to an iterated function system, but with functions changing at each step of iteration, we provide a natural example of a continuous one-parameter family of holomorphic functions of infinitely many variables. This family is parametrized by the compact space of positive integer sequences of prescribed growth and hence it can also be viewed as a parametric description of a trivial analytic multifunction.
We prove that for a parabolic subgroup of the fixed points sets of all elements in are the same. This result, together with a deep study of the structure of subgroups of acting freely and properly discontinuously on , entails a generalization of the so called weak Hurwitz’s theorem: namely that, given a complex manifold covered by and such that the group of deck transformations of the covering is “sufficiently generic”, then is isolated in .
Suppose is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold . The main result is that if the real analytic set of points at which is not strongly -convex is of dimension at most , then almost every sufficiently large sublevel of is strongly -convex as a complex manifold. For of dimension , this is a special case of a theorem of Diederich and Ohsawa. A version for real analytic with corners is also obtained.
The Leitmotiv of this work is to find suitable notions of dual varieties in a general sense. We develop the basic elements of a duality theory for varieties and complex spaces, by adopting a geometric and a categorical point of view. One main feature is to prove a biduality property for each notion which is achieved in most cases.
For smooth bounded pseudoconvex domains in , we provide geometric conditions on the boundary which imply compactness of the -Neumann operator. It is noteworthy that the proof of compactness does not proceed via verifying the known potential theoretic sufficient conditions.
We first prove a strengthening of Miyaoka’s generic semi-positivity theorem: the quotients of the tensor powers of the cotangent bundle of a non-uniruled complex projective manifold have a pseudo-effective (instead of generically nef) determinant. A first consequence is that is of general type if its cotangent bundle contains a subsheaf with ‘big’ determinant. Among other applications, we deduce that if the universal cover of is not covered by compact positive-dimensional analytic subsets,...
Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for...