Image of analytic hypersurfaces. II.
We prove that every singular algebraic curve in ℝⁿ admits local tangential Markov inequalities at each of its points. More precisely, we show that the Markov exponent at a point of a real algebraic curve A is less than or equal to twice the multiplicity of the smallest complex algebraic curve containing A.
We construct a variant of Koppelman's formula for (0,q)-forms with values in a line bundle, O(l), on projective space. The formula is then applied to a study of a Radon transform for (0,q)-forms, introduced by Gindikin-Henkin-Polyakov. Our presentation follows along the basic lines of Henkin-Polyakov [3], with some simplifications.
Let be two regular functions from the smooth affine complex variety to the affine line. The associated exponential Gauß-Manin systems on the affine line are defined to be the cohomology sheaves of the direct image of the exponential differential system with respect to . We prove that its holomorphic solutions admit representations in terms of period integrals over topological chains with possibly closed support and with rapid decay condition.
A necessary and sufficient condition is obtained for a discrete multiplicity variety to be an interpolating variety for the space .
We present a construction of an intersection product of arbitrary complex analytic cycles based on a pointwise defined intersection multiplicity.