Dimensionstheorie in globalen Moduln.
We prove that any divisor of a global analytic set has a generic equation, that is, there is an analytic function vanishing on with multiplicity one along each irreducible component of . We also prove that there are functions with arbitrary multiplicities along . The main result states that if is pure dimensional, is locally principal, is not connected and represents the zero class in then the divisor is globally principal.
Soit une variété analytique complexe lisse et un diviseur libre. Les connexions logarithmiques intégrables par rapport à peuvent être étudiées comme des -modules localement libres munis d’une structure de module (à gauche) sur l’anneau des opérateurs différentiels logarithmiques . Dans cet article nous étudions deux résultats liés : la relation entre les duaux d’une connexion logarithmique intégrable sur les anneaux de base et , et un critère différentiel pour le théorème de comparaison...
We study Hardy, Bergman, Bloch, and BMO spaces on convex domains of finite type in -dimensional complex space. Duals of these spaces are computed. The essential features of complex domains of finite type, that make these theorems possible, are isolated.
Let be a psh function on a bounded pseudoconvex open set , and let be the associated multiplier ideal sheaves, . Motivated by global geometric issues, we establish an effective version of the coherence property of as . Namely, given any , we estimate the asymptotic growth rate in of the number of generators of over , as well as the growth of the coefficients of sections in with respect to finitely many generators globally defined on . Our approach relies on proving asymptotic integral...