Displaying 421 – 440 of 747

Showing per page

On compact Kähler surfaces

Nicholas Buchdahl (1999)

Annales de l'institut Fourier

Without relying on the classification of compact complex surfaces, it is proved that every such surface with even first Betti number admits a Kähler metric and that a real form of the classical Nakai-Moishezon criterion holds on the surface.

On complete intersections

Franc Forstnerič (2001)

Annales de l’institut Fourier

We construct closed complex submanifolds of n which are differential but not holomorphic complete intersections. We also prove a homotopy principle concerning the removal of intersections with certain complex subvarieties of n .

On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles

Takuro Mochizuki (2009)

Annales de l’institut Fourier

In this short survey, we would like to overview the recent development of the study on Deligne-Malgrange lattices and resolution of turning points for algebraic meromorphic flat bundles. We also explain their relation with wild harmonic bundles. The author hopes that it would be helpful for access to his work on wild harmonic bundles.

On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in 𝐂 n

Jean Erik Björk (1974)

Annales de l'institut Fourier

Let V be an algebraic variety in C n and when k 0 is an integer then Pol ( V , k ) denotes all holomorphic functions f ( z ) on V satisfying | f ( z ) | C f ( 1 + | z | ) k for all z V and some constant C f . We estimate the least integer ϵ ( V , k ) such that every f Pol ( V , k ) admits an extension from V into C n by a polynomial P ( z 1 , ... , z n ) , of degree k + ϵ ( V , k ) at most. In particular lim k > ϵ ( V , k ) is related to cohomology groups with coefficients in coherent analytic sheaves on V . The existence of the finite integer ϵ ( V , k ) is for example an easy consequence of Kodaira’s Vanishing Theorem.

On irreducible components of a Weierstrass-type variety

Romuald A. Janik (1997)

Annales Polonici Mathematici

We give a characterization of the irreducible components of a Weierstrass-type (W-type) analytic (resp. algebraic, Nash) variety in terms of the orbits of a Galois group associated in a natural way to this variety. Since every irreducible variety of pure dimension is (locally) a component of a W-type variety, this description may be applied to any such variety.

Currently displaying 421 – 440 of 747