Displaying 121 – 140 of 403

Showing per page

Extremal metrics and lower bound of the modified K-energy

Yuji Sano, Carl Tipler (2015)

Journal of the European Mathematical Society

We provide a new proof of a result of X.X. Chen and G.Tian [5]: for a polarized extremal Kähler manifold, the minimum of the modified K-energy is attained at an extremal metric. The proof uses an idea of C. Li [16] adapted to the extremal metrics using some weighted balanced metrics.

Feuilletages holomorphes de codimension un dont la classe canonique est triviale

Frédéric Touzet (2008)

Annales scientifiques de l'École Normale Supérieure

We give a description of Kähler manifolds M equipped with an integrable subbundle of T M of rank n - 1 ( n = dim M ) under the assumption that the line bundle D é t is numerically trivial. This is a sort of foliated version of Bogomolov’s theorem concerning Kähler manifolds with trivial canonical class.

Filtration de Harder-Narasimhan pour des fibrés complexes ou des faisceaux sans torsion

Laurent Bruasse (2003)

Annales de l’institut Fourier

On généralise dans cet article la notion de filtration de Harder-Narasimhan au cas des fibrés complexes sur une variété presque complexe compacte d'une part, et au cas des faisceaux cohérents sans torsion sur une variété holomorphe d'autre part. On démontre, dans les deux cas, l'existence d'un déstabilisant maximal. On obtient un théorème de convergence en famille et par là-même l'ouverture de la stabilité en déformation.

Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds

Laurent Meersseman (2011)

Annales scientifiques de l'École Normale Supérieure

Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of 0 in p , for some p > 0 ) or differentiable (parametrized by an open neighborhood of 0 in p , for some p > 0 ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point t of the parameter space, the fiber over t of the first family is biholomorphic to the fiber over t of the second family. Then, under which conditions are the...

Foliations with complex leaves

Giuliana Gigante, Giuseppe Tomassini (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let X be a smooth foliation with complex leaves and let D be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space X , D . In particular we concentrate on the following two themes: function theory for the algebra D X and cohomology with values in D .

Foliazioni di Monge-Ampère e classificazione olomorfa

Giorgio Patrizio (2005)

Bollettino dell'Unione Matematica Italiana

Si illustrano alcuni sviluppi della teoria delle foliazioni di Monge-Ampère e delle sue applicazioni alla classificazione delle varietà complesse non compatte.

Gauge theoretical methods in the classification of non-Kählerian surfaces

Andrei Teleman (2009)

Banach Center Publications

The classification of class VII surfaces is a very difficult classical problem in complex geometry. It is considered by experts to be the most important gap in the Enriques-Kodaira classification table for complex surfaces. The standard conjecture concerning this problem states that any minimal class VII surface with b₂ > 0 has b₂ curves. By the results of [Ka1]-[Ka3], [Na1]-[Na3], [DOT], [OT] this conjecture (if true) would solve the classification problem completely. We explain a new approach...

Geometric stability of the cotangent bundle and the universal cover of a projective manifold

Frédéric Campana, Thomas Peternell (2011)

Bulletin de la Société Mathématique de France

We first prove a strengthening of Miyaoka’s generic semi-positivity theorem: the quotients of the tensor powers of the cotangent bundle of a non-uniruled complex projective manifold X have a pseudo-effective (instead of generically nef) determinant. A first consequence is that X is of general type if its cotangent bundle contains a subsheaf with ‘big’ determinant. Among other applications, we deduce that if the universal cover of X is not covered by compact positive-dimensional analytic subsets,...

Currently displaying 121 – 140 of 403